

1 Interspecies Interactions Drive Community-Level Selection in
2 Microbial Coalescence

3 Jinyeop Song¹, Jiliang Hu¹, and Jeff Gore¹

4 ¹Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

5 **Abstract**

6 It has long been debated in ecology whether communities behave as cohesive units or
7 as loose collections of independent species. Here, we study this question in the context
8 of community coalescence, the mixing of previously isolated communities, using bacterial
9 microcosm experiments combined with ecological modeling. Our results demonstrate that
10 interspecies interaction strength determines whether communities or species are the units
11 of selection during coalescence. When interactions are moderate to strong, one parental
12 community consistently outcompetes the other, indicating community-level selection. In
13 contrast, under weak interactions, species fates are uncorrelated and the two communities
14 contribute equally to the coalesced outcome, indicating the absence of community-level se-
15 lection. These patterns extend to communities derived from natural samples with greater
16 taxonomic diversity and richness. Furthermore, we identify two distinct regimes underly-
17 ing community-level selection in experiments with different media conditions: an emergent
18 regime in which collective dynamics shape outcomes that cannot be predicted from species
19 traits alone, and a top-down regime where dominant species determine the winning commu-
20 nity. Together, these results reconcile conflicting observations on community-level selection
21 during community coalescence by demonstrating that communities behave as cohesive units
22 only when interactions are sufficiently strong.

23 **1 Introduction**

24 In nature, species coexist and interact within complex communities, yet whether these assem-
25 blages function as cohesive, integrated units or merely as loose collections of independently
26 acting species remains a fundamental question in ecology. Historically, this tension has been
27 framed through two influential paradigms. Clements' "superorganism" view treats communities
28 as discrete biological entities with emergent properties arising from species interdependencies,
29 potentially as a result of coevolution ¹⁻⁵. In contrast, Gleason's individualistic hypothesis posits
30 that species independently occupy niches, with community composition emerging from the coin-
31 cidental overlap of species ranges ⁶⁻⁹. Despite decades of research, the conditions that determine
32 when communities behave as cohesive units versus loose species assemblages remain unclear.

33 These contrasting frameworks make distinct predictions in the context of community coales-
34 cence, the mixing of previously isolated communities ^{10,11}. Coalescence occurs across diverse con-
35 texts and scales: environmental disturbances trigger microbial community mixing in soils ^{12,13},
36 flooding events promote coalescence in aquatic and estuarine habitats ¹⁴, skin microbiomes un-
37 dergo exchange through daily social contact ¹⁵, and gut microbiomes are subject to wholesale
38 community transfer through fecal microbiota transplantation ^{16,17}. Coalescence brings species
39 with distinct interaction histories into contact, creating novel cross-community interactions that
40 can reshape the resulting assemblage ¹⁰. Thus, it provides a natural test for the individualistic
41 versus holistic paradigms: The holistic view predicts that species within a community have corre-
42 lated persistence, making the community the primary unit of selection, termed community-level
43 selection. The individualistic view predicts species-level selection, yielding outcomes shaped
44 by individual fitness regardless of community origin, with no systematic correlation in species
45 persistence within parental communities.

46 Substantial theoretical and empirical evidence supports the holistic prediction that commu-
47 nities act as cohesive units during coalescence. Early theoretical work by Gilpin ¹⁸ suggested that
48 pre-assembled communities, having already undergone internal competitive exclusion, possess
49 structured interaction patterns that differ fundamentally from randomly assembled commu-
50 nities. Because species within such communities have been filtered to coexist, their survival
51 outcomes become coupled, producing asymmetric post-coalescence communities dominated by
52 one parental community ¹⁹. Notably, this structured interaction can arise due to ecological exclu-
53 sion alone, even in the absence of long-term coevolution, as demonstrated in synthetic microbial

54 communities^{20,21}. Building on this foundation, resource-consumer models formalized the mech-
55 anism by which such selection occurs, demonstrating that communities with superior collective
56 fitness through resource consumption outcompete others in ways not predictable from individual
57 species performance alone^{11,22–24}. Empirically, correlated selection between dominant and sub-
58 dominant taxa has been observed across 100 coalescence experiments, confirming that species
59 retention within communities is indeed correlated²⁵.

60 However, opposing evidence supports the individualistic prediction that species respond inde-
61 pendently to coalescence events, with outcomes primarily determined by environmental sorting
62 rather than collective community dynamics. Empirical work reports that coexistence between
63 species from different source communities is common through niche partitioning rather than
64 competitive exclusion during macro-scale biogeographic interchange in marine and terrestrial
65 biomes²⁶; similar patterns have been observed in microbial systems where closely related species
66 coexist via resource partitioning²⁷. Other work shows that species from the same community
67 rarely go extinct together in the fossil record²⁸. In microbial systems, local environmental
68 factors explain more variation than the presence of constantly interchanging neighboring com-
69 munities²⁹. Strain-resolved metagenomic analyses of *in vitro* gut microbial communities showed
70 species-level dynamics rather than community-level selection, with surviving species originating
71 from both parental communities^{30,31}. These findings suggest that selection during coalescence
72 acts on species-level traits rather than on emergent community properties.

73 Together, these contrasting lines of evidence indicate that communities behave as units of
74 selection in some coalescence events but not others; however, the governing factors of these
75 transitions remain poorly understood. Here, we combine empirical and theoretical approaches
76 to investigate how interspecies interaction strength drives these contrasting outcomes. Using
77 randomly assembled synthetic microbial communities across different interaction strengths, we
78 classify post-coalescence outcomes into three types: Dominance (one community wins), Mixture
79 (both persist), and Restructuring (a novel state emerges). Under weak interactions, Mixture
80 prevails and species persistence is uncorrelated, consistent with individualistic dynamics. As
81 interaction strength increases, the system shifts toward Dominance, where species persistence
82 becomes correlated, indicating community-level selection. A theoretical model with minimal
83 pairwise interactions reproduces these experimental observations, and the patterns generalize
84 to natural communities with greater taxonomic complexity. Further analysis reveals two mech-
85 anistic regimes underlying community-level selection: one where a few dominant taxa largely

86 determine the winner, and another where collective multi-species dynamics shape the outcome.
87 These results reconcile conflicting observations by establishing interaction strength as the control
88 parameter for community-level selection.

89 **2 Results**

90 **2.1 Community-level selection is prevalent in microbial coalescence**

91 Our central question is whether selection acts primarily on whole communities as cohesive units
92 during community coalescence. To address this, we asked how often coalescence outcomes are
93 represented primarily by one parental community versus blending of both or forming a novel
94 community. Consider a coalescence event where communities A and B merge to produce commu-
95 nity C (Fig. 1A). We represent each community by its normalized abundance vector and quantify
96 the similarity between the coalesced community C and each parental community (Fig. 1B):

$$\text{Sim}(C, A) = \vec{x}_C \cdot \vec{x}_A, \quad \text{Sim}(C, B) = \vec{x}_C \cdot \vec{x}_B \quad (1)$$

97 where \vec{x}_A , \vec{x}_B are normalized abundance vectors of parental communities A and B, and \vec{x}_C is
98 that of the coalesced community. These two similarity scores yield a two-dimensional similarity
99 map in which the location of C reflects how strongly it resembles each parental community. We
100 partition this map into three coalescence outcome classes (see Methods): Dominance, where
101 C closely resembles one parental community but not the other; Mixture, where C similarly
102 resembles both parental communities; and Restructuring, where C diverges from both parental
103 communities into a novel configuration. Crucially, Dominance reflects community-level selection:
104 one parental community displaces the other while retaining its internal compositional structure,
105 indicating that its species persist collectively.

106 To quantify the occurrence of outcome types experimentally, we assembled random in-vitro
107 communities and subjected them to pairwise coalescence (Fig. 1C). We first curated a strain
108 library of 54 bacterial isolates collected from diverse environments (soil, tree surface, and flower
109 stamen). The library is phylogenetically broad, spanning 29 families across three phyla: Pro-
110 teobacteria, Firmicutes, and Bacteroidota (Extended Data Fig. 1; Supplementary Fig. 1). From
111 this library, we assembled 30 parental communities with varying initial richness (6, 12, or 24
112 species; see Methods) and stabilized them for 7 days under daily growth–dilution cycles ($\times 30$

every 24 h) (Fig. 1C). Our initial experiments were done in Base medium (1 g L⁻¹ yeast extract, 1 g L⁻¹ soytone, 10 mM sodium phosphate, 0.1 mM CaCl₂, 2 mM MgCl₂, 4 mg L⁻¹ NiSO₄, 50 mg L⁻¹ MnCl₂, 5 g L⁻¹ glucose and 4 g L⁻¹ urea; pH 6.5), a buffered complex medium that we have previously determined has moderate interaction strength and supports high species coexistence (Supplementary Information, mean species survival ratio = 74 ± 2%). We then performed 83 pairwise coalescence events by mixing stabilized parental communities at equal volume and restabilizing for an additional 7 days. Community compositions of parental and coalesced communities were measured at the end of stabilization by 16S rRNA amplicon sequencing (Amplicon Sequence Variants, ASVs), and we also recorded the optical density (OD₆₀₀) and pH of the communities to contextualize assembly and post-coalescence dynamics.

Representative time series illustrate the spectrum of post-coalescence dynamics (Fig. 1D). In outcomes classified as Dominance, one parental lineage rapidly displaces the other after mixing and the coalesced community converges to a composition closely matching that parental community, while largely preserving its internal relative-abundance structure over serial dilution cycles. In the Restructuring case, the merged community converges toward a novel state distinct from both parental communities. Among 3 representative time-series trajectories, we did not observe Mixture cases in which both parental communities remained comparably represented after coalescence (see Supplementary Fig. 26).

Projecting all outcomes into the similarity space based on stabilized compositions (Fig. 1E) revealed that Dominance is the most frequent empirical outcome. Of the 83 coalescence events, 54 were classified as Dominance, 26 as Restructuring, and 3 as Mixture (Fig. 1E). This pattern of Dominance as the most frequent outcome was robust across variants of similarity metrics (Extended Data Fig. 2). One possibility is that the observed frequency of Dominance results from skewed species abundance distributions rather than correlated selection among species from the same parental community. To rule out this possibility, we compared experimental outcomes against two null models that assume no correlation in species selection: (1) abundance-weighted random selection and (2) shuffled abundance (see Supplementary Information). The experimentally observed asymmetry significantly exceeded both null expectations (Extended Data Fig. 3), supporting that Dominance reflects correlated species selection within parental communities.

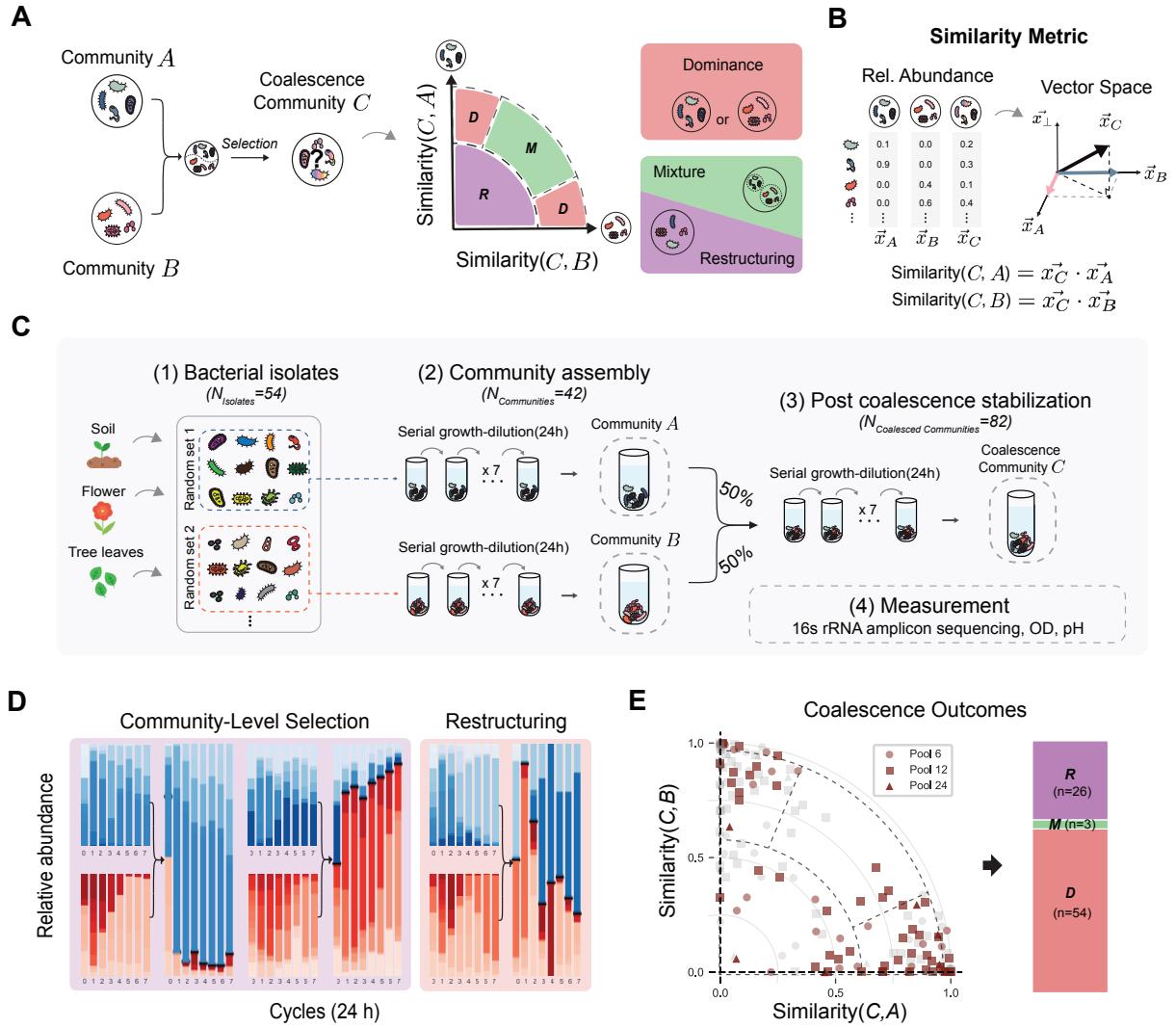


Figure 1: **Fig. 1. Coalescence of synthetic microbial communities frequently yields Dominance.** **a**, Schematic of coalescence: parental communities A and B are mixed to produce C. Outcomes are classified as Dominance (one parent wins), Mixture (both persist), or Restructuring (novel state). **b**, We use similarity to quantify compositional resemblance between communities and define a two-dimensional similarity map for classifying outcomes. **c**, Experimental workflow: 30 parental communities (initial richness 6, 12, or 24) were assembled from 54 bacterial isolates, stabilized, mixed pairwise ($n = 83$), and restabilized. **d**, Representative time courses showing Dominance (left, center) and Restructuring (right). **e**, Dominance is the most frequent outcome in Base medium. Of 83 coalescence events, 54 (65%) were classified as Dominance, 26 (31%) as Restructuring, and 3 (4%) as Mixture. Different symbols indicate initial richness (circles: 6; squares: 12; triangles: 24 species).

¹⁴³ **2.2 Theoretical model with random interactions reproduces community-level selection**

¹⁴⁴ To gain insight into why Dominance is the prevalent outcome, we introduced a generalized Lotka–
¹⁴⁵ Volterra (gLV) model^{32,33} that mirrors the experimental protocol (Fig. 2A). In this classic model,

147 species grow logistically and compete pairwise:

$$\frac{dn_i}{dt} = n_i \left(r_i - \sum_j \alpha_{ij} n_j \right) \quad (2)$$

148 where n_i is abundance, r_i is growth rate, and α_{ij} is the competition coefficient between species
149 i and j (with self-interaction $\alpha_{ii} = 1$). We fixed $r_i = 1$ and drew off-diagonal competition coeffi-
150 cients from a uniform distribution $\mathbb{U}(0, 2\mu)$ with mean μ , which controls the average competition
151 strength: higher μ means stronger interspecies competition^{34,35}. From a pool of 54 species, we
152 generated two parental communities of 12 species each with no shared species, allowed each to
153 reach equilibrium, then mixed them equally to simulate coalescence (Fig. 2A; see Methods for
154 details). Post-coalescence compositions were analyzed using the same similarity metrics as in
155 the experiments.

156 We simulated 1,200 random coalescence events at interaction strength $\mu = 0.6$ and analyzed
157 the similarity of each coalescence outcome to the two parental communities. At this inter-
158 action strength, the random-interaction model quantitatively reproduces the high frequency of
159 Dominance observed in the experiments. Outcomes concentrate near the axes rather than the di-
160 agonal, indicating asymmetric dominance by one parental community (Fig. 2B). Quantitatively,
161 Dominance accounts for 61% of all outcomes, far more frequent than Restructuring (26%) or
162 Mixture (13%; Fig. 2B, right). This observation suggests that interspecies interactions alone,
163 a minimal and generic condition, are sufficient to reproduce the high frequency of Dominance
164 observed in coalescence.

165 To understand how Dominance emerges in the model and whether it reflects community-level
166 selection, we examined the role of the assembly process. During assembly, competitive exclusion
167 filters out species with strong competitive interactions, leaving communities with reduced mean
168 interaction strength compared to the initial pool (paired t -test, $P < 0.001$; Fig. 2C). Because
169 surviving species compete weakly with each other but face stronger competition from outsiders,
170 their fates become coupled during coalescence: they tend to persist or go extinct together. We
171 quantified this effect using pairwise selection correlation—the degree to which species pairs share
172 the same survival outcome (both persist or both go extinct) across coalescence events (Supple-
173 mentary Information; Fig. 2D). Species from the same parental community showed strongly
174 positive correlations, while cross-community pairs showed negative correlations—a pattern ob-
175 served in both simulations and experiments (Fig. 2D). This confirms that member species within

176 a parental community, having undergone assembly together, have coupled fates and are co-
 177 selected during coalescence. Together, the prevalence of Dominance combined with positive
 178 within-community selection correlation provides evidence for community-level selection in this
 179 system.

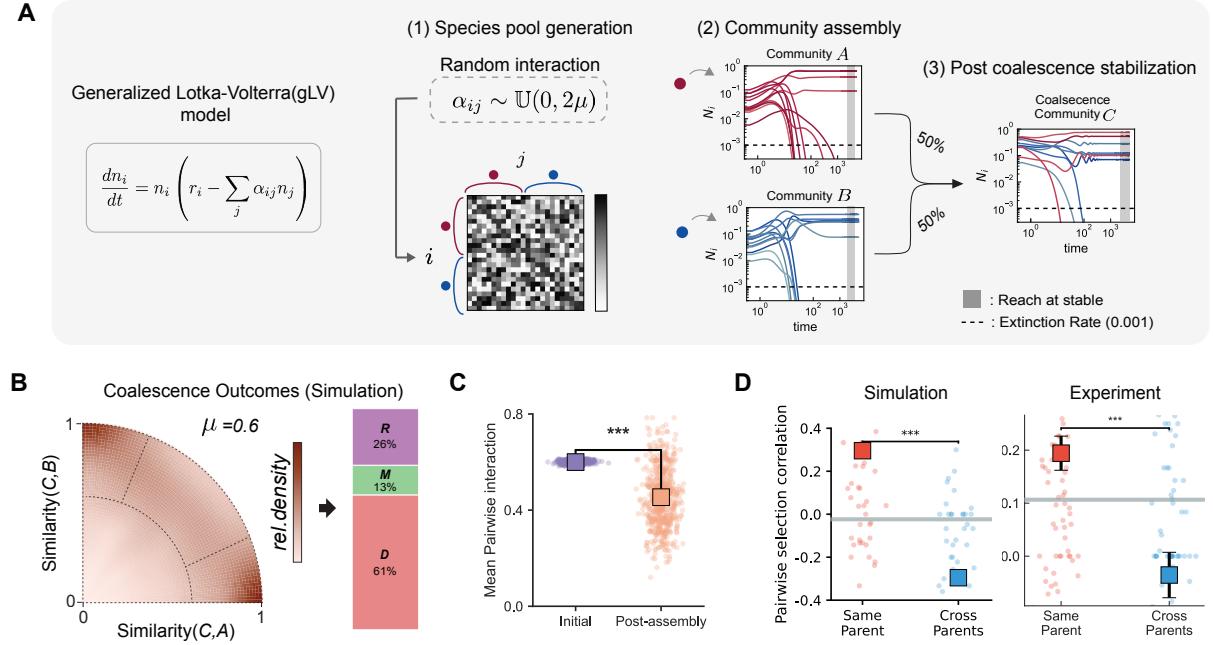


Figure 2: **Fig. 2. Generalized Lotka–Volterra model of community coalescence.** **a**, Simulation workflow: species grow according to the generalized Lotka–Volterra (gLV) equations, where interaction coefficients α_{ij} are drawn from a uniform distribution $\mathbb{U}(0, 2\mu)$ with mean μ controlling mean interaction strength. Two equilibrated parental communities are mixed and simulated to steady state. **b**, Outcome density map ($\mu = 0.6$, $n = 1,200$ simulations). The model reproduces the high frequency of Dominance (61%) observed experimentally. **c**, Community assembly significantly reduces the mean interaction strength among surviving species (paired *t*-test, $p < 0.001$). **d**, Pairwise selection correlation. Species pairs from the same parental community show positive correlation (co-survival), while cross-community pairs show negative correlation, indicating community-level selection. This pattern holds for both simulations (left) and experiments (right). Error bars, s.e.m.

180 **2.3 Interaction strength controls coalescence outcome type and degree of**
 181 **community-level selection**

182 Having established that random interspecies interactions can recapitulate Dominance with cor-
 183 related pairwise selection, we next investigated how interaction strength alters coalescence
 184 outcomes. We simulated 1,200 coalescence events at each of three representative interaction
 185 strengths ($\mu = 0.3, 0.6, 0.8$) and mapped outcomes into the similarity space (Fig. 3A). At weak
 186 interactions ($\mu = 0.3$), outcomes clustered in the interior of the map, indicating Mixture; as
 187 μ increased, outcomes shifted toward the axes, indicating Dominance. We quantified this shift

188 using the Parental Dominance Index (PDI), which captures the relative contribution of each
 189 parental community (0: parental community B, 0.5: equal, 1: parental community A; see Meth-
 190 ods). PDI distributions shifted from unimodal near 0.5 at $\mu = 0.3$ to bimodal at higher μ
 191 (Fig. 3A), reflecting a transition in which Dominance becomes increasingly frequent, indicating
 192 community-level selection.

193 Across interaction strengths from $\mu = 0$ to 1.2, we observed a systematic shift in coalescence
 194 outcomes (Fig. 3B), with Mixture predominating at weak interactions and Dominance at strong
 195 interactions. Restructuring emerged at moderate to high interaction strengths. These patterns
 196 were robust to variation in carrying capacities, interaction distributions, similarity metrics, and
 197 community size (Supplementary Figs. 2–4; Extended Data Fig. 4). Notably, the frequency
 198 of Dominance remained relatively stable across parental communities ranging from 4 to 48
 199 species, spanning our experimental species pool range. To determine whether this transition
 200 from Mixture to Dominance corresponds to the degree of co-selection, we examined pairwise
 201 selection correlation across interaction strengths. Notably, within-community pairwise selection
 202 correlation emerged only at high interaction strengths, indicating that species fates become
 203 coupled only when interactions are sufficiently strong (Extended Data Fig. 5). These findings
 204 indicate that interaction strength simultaneously determines both coalescence outcome type and
 205 the level at which selection operates.

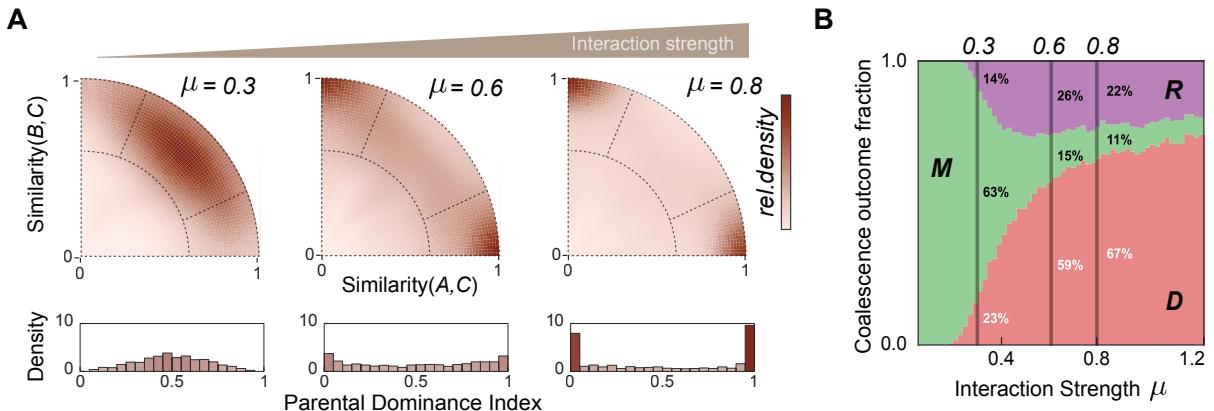


Figure 3: **Fig. 3. Interaction strength controls the transition between coalescence outcome types in simulation.** **a**, Simulated coalescence outcome maps at three representative interaction strengths: $\mu = 0.3, 0.6, 0.8$; $n = 1,200$ simulations per condition. Outcomes shift from central Mixtures at weak interactions ($\mu = 0.3$) to axis-aligned Dominance at strong interactions ($\mu = 0.8$). Histograms show the Parental Dominance Index (PDI) transitioning from unimodal to bimodal. **b**, Outcome fractions across interaction strengths ($\mu = 0–1.2$). Mixture predominates at low μ , while Dominance becomes prevalent as μ increases. Restructuring peaks at intermediate strengths. Error bars, s.e.m.

206 **2.4 Nutrient-dependent interaction strength in experiments recapitulates**
207 **model predictions**

208 Following prior work showing that nutrient concentration intensifies microbial competition^{34–36},
209 we conducted additional coalescence experiments by removing or augmenting glucose and urea
210 in the Base medium used in Fig. 1 (Methods). This yielded two additional media conditions
211 (Fig. 4A): Nutr– (no added glucose/urea) and Nutr+ (high supplementation). Higher nutrient
212 concentration amplifies consumer–resource feedbacks and intensifies environmental modification,
213 thereby strengthening interspecies interactions³⁶. To empirically validate this effect, we mea-
214 sured failed invasion frequency using pairwise invasion assays among the 12 most abundant
215 isolates (95:5 initial frequency; Methods, Supplementary Figs. 5–7). The fraction of failed in-
216 vasions increased monotonically with nutrient supply (Nutr–: $2 \pm 1\%$; Base: $33 \pm 4\%$; Nutr+:
217 $48 \pm 4\%$; mean \pm s.e.m.; Fig. 4B). Assuming the uniform distribution used in the model, cali-
218 brating these values against gLV simulations yielded approximate mean interaction strengths of
219 $\mu \approx 0.5$ for Nutr–, $\mu \approx 0.7$ for Base, and $\mu \approx 0.9$ for Nutr+ (see Supplementary Methods).

220 Given that nutrient concentration modulates interaction strength, we performed coalescence
221 experiments in Nutr– and Nutr+ media using the same parental community library to examine
222 how interaction strength affects coalescence outcomes. The distribution of outcomes in similarity
223 space shifted systematically with nutrient concentration (Fig. 4C), which we quantified by the
224 fraction of each outcome type (Fig. 4D). In Nutr– ($n = 90$), where interactions are weakest,
225 Mixture was the most frequent outcome (53%), and Dominance was substantially reduced to
226 39% compared to the Base medium (Dominance: 65%, Mixture: 4%). In Nutr+ ($n = 90$),
227 Dominance further increased to 76%. Pairwise selection correlation analysis confirmed that this
228 shift corresponds to a transition in the level of selection (Extended Data Fig. 6). In Base and
229 Nutr+ media, within-community species pairs showed significantly higher selection correlation
230 than cross-community pairs ($P < 0.001$), consistent with community-level selection. In Nutr–,
231 no such correlation was observed, indicating species-level dynamics. These results experimentally
232 validate the theoretical prediction: weaker interactions yield Mixture with uncorrelated species
233 fates, while stronger interactions yield Dominance with community-level selection.

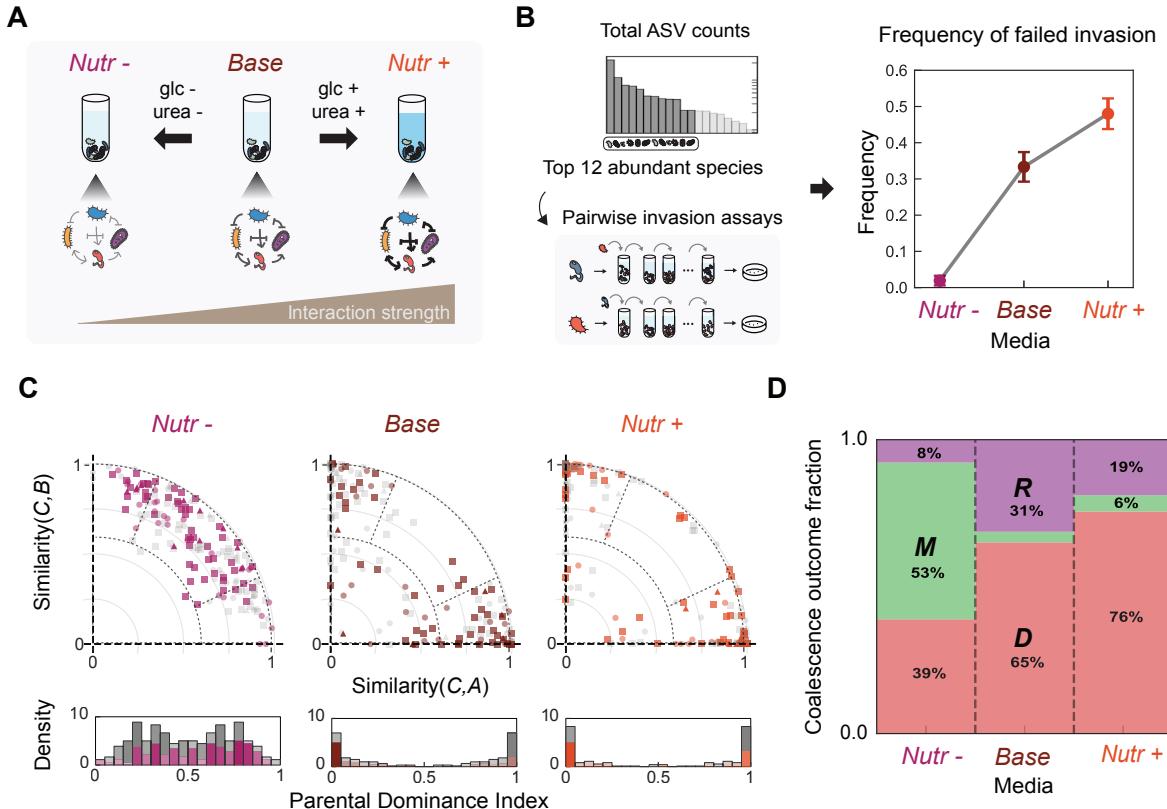


Figure 4: **Fig. 4. Nutrient concentration modulates interaction strength and validates model predictions.** Experimental manipulation of nutrient concentration confirms that stronger interactions shift coalescence outcomes from Mixture toward Dominance. **a**, Schematic of nutrient manipulation: we varied glucose and urea concentrations to create three media conditions with increasing interaction strength (Nutr-, Base, Nutr+). **b**, Pairwise invasion assays confirm that nutrient concentration modulates interaction strength. Failed invasion frequency among the 12 most abundant isolates (95:5 initial frequency, $n = 132$ assays per medium) increases monotonically with nutrient concentration (Nutr-: $2 \pm 1\%$, Base: $33 \pm 4\%$, Nutr+: $48 \pm 4\%$; mean \pm s.e.m.). **c**, Coalescence outcome distributions shift systematically with nutrient concentration. Scatter plots show outcomes in similarity space for each medium (Nutr-: $n = 90$, magenta; Base: $n = 83$, brown; Nutr+: $n = 90$, orange); different symbols indicate initial richness. Histograms show PDI distributions. **d**, The fraction of Dominance increases with nutrient concentration (39% in Nutr-, 65% in Base, 76% in Nutr+) while Mixture declines from 53% to 4% to 6% (chi-square test for trend, $p < 0.001$), consistent with model predictions. Error bars, s.e.m.

234 2.5 Dominant community predictability reveals two mechanistic regimes

235 We observed Dominance in both Base and Nutr+ media, consistent with community-level se-
 236 lection as confirmed by pairwise selection correlation (Extended Data Fig. 6). We next asked
 237 whether we can predict which parental community will win during coalescence. Prior work
 238 has suggested that species-level competitive outcomes may correlate with Dominance direc-
 239 tion^{10,37}. Inspired by these observations, we tested whether pairwise competition between dom-
 240 inant species^{34,36} predicts which community wins (Fig. 5A).

241 The relative abundance of dominant species in stabilized parental communities increased with
242 nutrient concentration ($44 \pm 2\%$ in Nutr-, $51 \pm 5\%$ in Base, $67 \pm 4\%$ in Nutr+; mean \pm s.e.m.,
243 Fig. 5B), suggesting that dominant species exert greater influence under higher nutrient concen-
244 tration. We therefore tested whether pairwise competition between dominant species predicts
245 the coalescence outcome by analyzing the linear relationship between dominant-species compet-
246 itive success (from invasion assays) and the PDI of coalescence outcomes (Fig. 5C). Predictive
247 power varied markedly across media: in Nutr-, where Mixture predominates and pairwise se-
248 lection correlation is weak, pairwise competition showed no predictive power ($R^2 = 0.00$); in
249 Base medium, predictive power was weak ($R^2 = 0.11$), consistent with collective multi-species
250 dynamics shaping outcomes; in Nutr+, pairwise competition was more predictive ($R^2 = 0.49$),
251 indicating that the dominant species contributes substantially to determining which community
252 wins. These results suggest that community-level selection spans a mechanistic continuum: at
253 one end, an emergent regime (Base medium) where multi-species dynamics collectively shape the
254 outcome and no single species trait is predictive, and at the other, a top-down regime (Nutr+
255 medium) where a few dominant taxa determine the winner.

256 We explored the mechanistic basis of the top-down regime by examining environmental mod-
257 ification through pH. In our system, dominant species are often strong pH modifiers that either
258 acidify or alkalinize the medium (Supplementary Fig. 8). In both Base and Nutr+ media, when
259 these pH-modifying species become dominant within a community, they determine the commu-
260 nity's overall pH; communities dominated by acidifiers become acidic, while those dominated
261 by alkalinizers become alkaline (Supplementary Fig. 9). In coalescence events between acidic
262 ($\text{pH} < 6.5$) and alkaline ($\text{pH} > 7.5$) parental communities, the acidic community won in only
263 56% of cases in Base medium ($n = 41$), but won in 91% of cases in Nutr+ medium ($n = 32$;
264 Fisher's exact test $p < 0.0001$; Extended Data Fig. 8), consistent with the hypothesis that
265 high nutrients amplify metabolic activity, thereby intensifying pH modification and excluding
266 pH-sensitive species^{36,38}. Thus, in Nutr+ medium, the dominant species determines community
267 pH, and community pH predicts coalescence outcome, providing a mechanistic explanation for
268 the top-down regime.

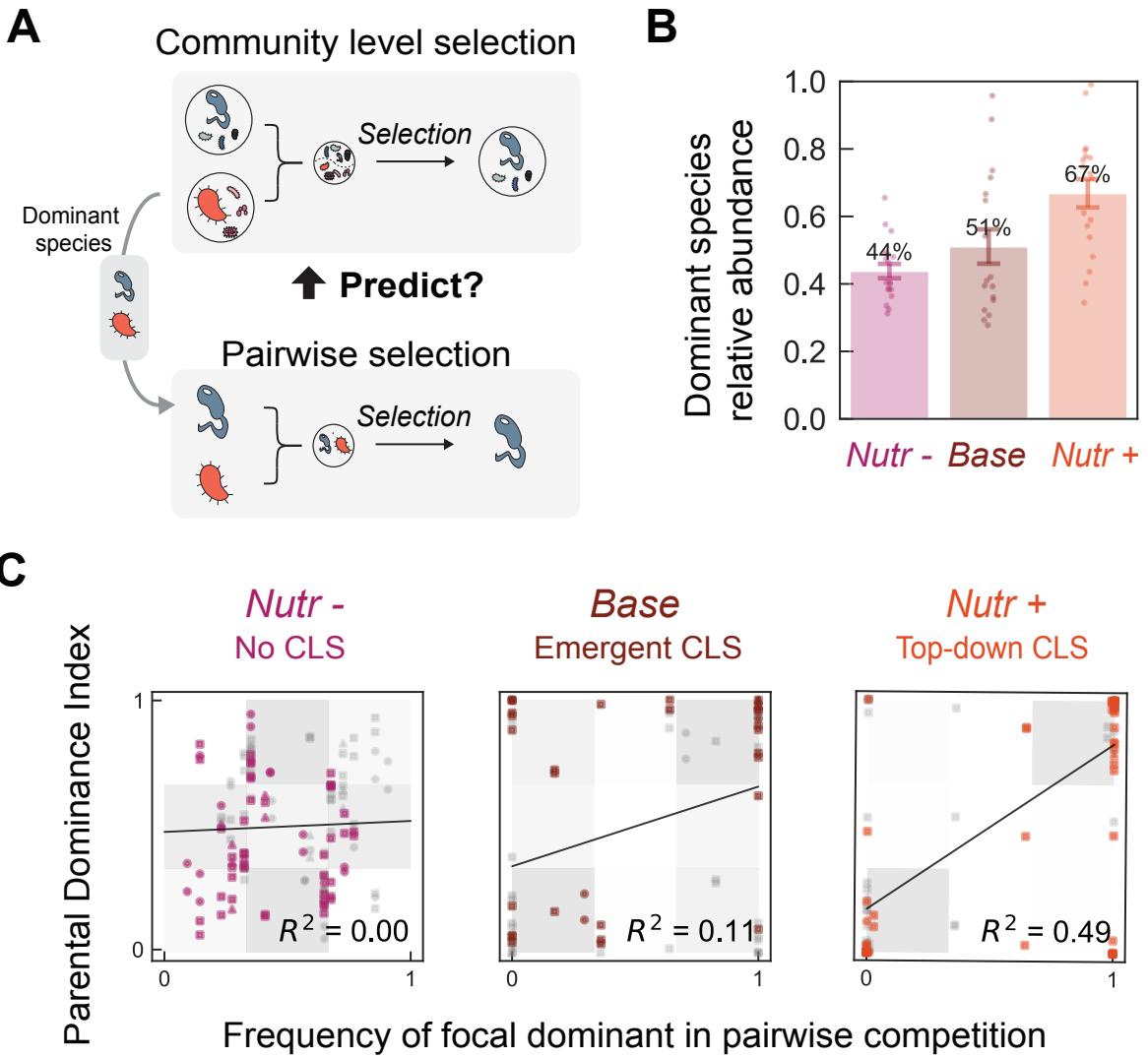


Figure 5: **Fig. 5. Predictability of Dominance direction reveals two mechanistic regimes.** The direction of Dominance (which parental community wins) becomes increasingly predictable from dominant species competition across media conditions, distinguishing an emergent regime (Base) from a top-down regime (Nutr+). **a**, Schematic: can pairwise competition between dominant species predict which community wins? **b**, Relative abundance of dominant species increases with nutrient concentration (Nutr-: $44 \pm 2\%$; Base: $51 \pm 5\%$; Nutr+: $67 \pm 4\%$; mean \pm s.e.m.). **c**, Dominant species competitive success versus PDI of coalescence outcomes; gray shading indicates Dominance. Predictive power: $R^2 = 0.00$ in Nutr-, $R^2 = 0.11$ ($p = 0.03$) in Base (emergent regime), and $R^2 = 0.49$ ($p < 0.001$) in Nutr+ (top-down regime). Linear regression with 95% confidence intervals shown.

269 **2.6 Interaction-dependent coalescence outcomes generalize to natural communities**

270

271 The synthetic communities described above were assembled from individually isolated bacterial
 272 strains, allowing precise control over initial composition but raising the question of whether
 273 these patterns generalize to more ecologically realistic settings. To address this, we performed

274 coalescence experiments using communities derived from natural environmental samples, which
275 harbor complex species assemblages shaped by evolutionary and ecological processes in their
276 natural habitats.

277 We collected six environmental samples from diverse microhabitats (soil, compost, and de-
278 composing organic matter) and established bacterial communities through seven rounds of se-
279 rial growth-dilution in laboratory media across all three nutrient conditions (Nutr-, Base, and
280 Nutr+; Fig. 6A). After stabilization, these natural sample-derived communities exhibited higher
281 ASV richness than synthetic communities (mean of 13.7 ± 7.2 ASVs above 0.1% threshold, com-
282 pared to 9.8 ± 4.8 in synthetic communities) and low ASV overlap among communities from
283 different samples (Supplementary Figs. 22–25).

284 We performed 15 pairwise coalescence events with two biological replicates each ($n = 30$ per
285 condition) across all three nutrient conditions after stabilization and analyzed outcomes using
286 the same similarity framework applied to synthetic communities. Natural sample-derived com-
287 munities showed similar patterns to synthetic communities: outcomes clustered along the axes
288 in similarity space (Fig. 6B,C). The fraction of Dominance outcomes increased with nutrient
289 concentration (37% in Nutr-, 70% in Base, 77% in Nutr+), mirroring the interaction-strength
290 dependence observed in synthetic communities. Natural communities showed higher Restructur-
291 ing fractions, possibly reflecting greater taxonomic diversity and more complex interaction net-
292 works. These results demonstrate that the interaction-dependent shift toward community-level
293 selection is robust and generalizes beyond precisely controlled synthetic consortia to naturally-
294 evolved microbial assemblages.

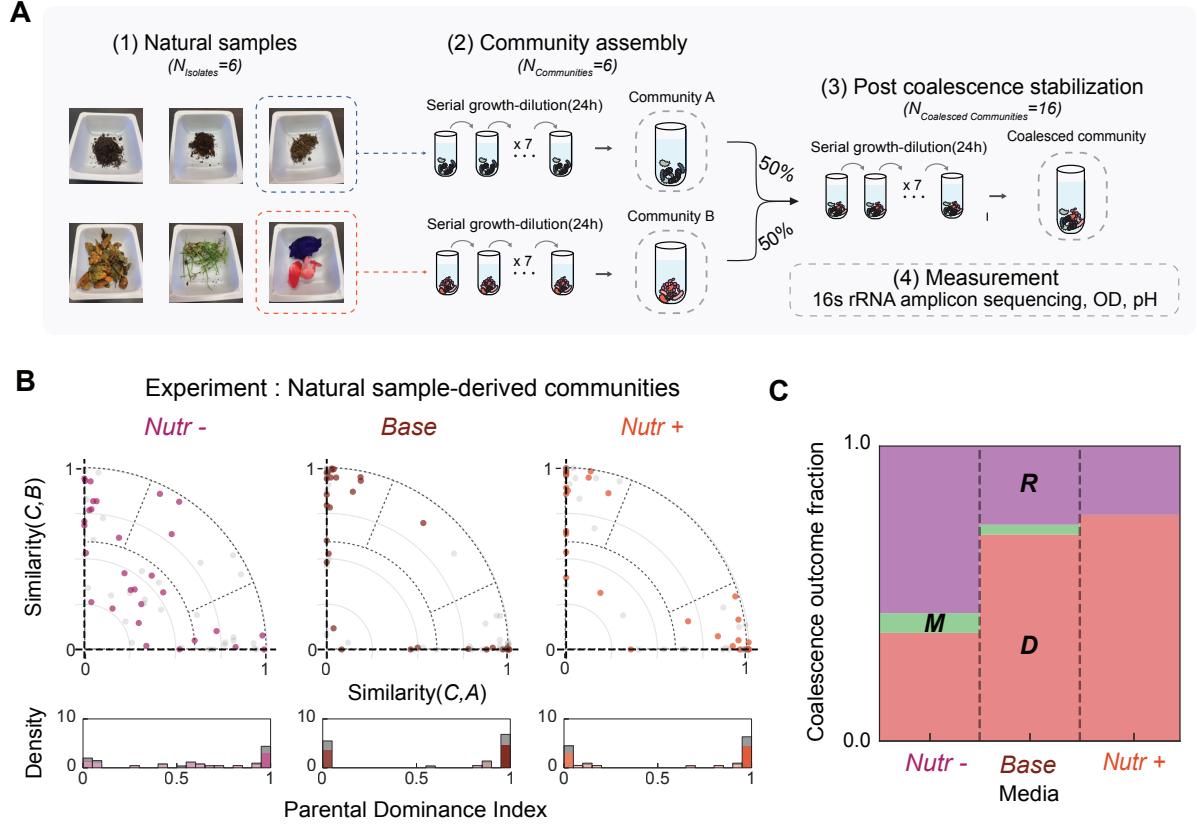


Figure 6: **Fig. 6. Dominance generalizes to natural sample-derived communities.** Natural environmental communities show qualitatively similar coalescence patterns to synthetic communities, with Dominance frequency increasing under higher nutrient concentration. **a**, Experimental workflow follows Fig. 1c, but uses natural sample-derived communities from six environmental samples including soil, compost, and decomposing organic matter. **b**, Coalescence outcome distributions in similarity space for natural communities across three media conditions ($n = 30$ coalescence events per condition, 15 unique pairs \times 2 replicates). Similar to synthetic communities, outcomes cluster near the diagonal under weak interactions and shift toward the axes under strong interactions. Histograms below show PDI distributions. **c**, The fraction of Dominance outcomes increases with nutrient concentration in natural communities (37% in Nutr-, 70% in Base, 77% in Nutr+), consistent with patterns observed in synthetic communities. Error bars, s.e.m.

295 3 Discussion

296 Our work demonstrates that interspecies interaction strength governs community coalescence
 297 outcomes, determining both the dominant outcome type and the level at which selection oper-
 298 ates. In both experiments and modeling, when interactions are strong, Dominance prevails and
 299 species persistence is correlated within parental communities, indicating community-level se-
 300 lection; when interactions are weak, Mixture predominates and species respond independently.
 301 Furthermore, predictability from dominant species reveals two distinct mechanisms underly-
 302 ing Dominance: a top-down regime driven by dominant species via pH modification, and an

303 emergent regime where collective dynamics reduce predictability. These findings reconcile the
304 Clements–Gleason debate: interspecies interaction strength determines whether communities
305 behave as cohesive units or loose species assemblages.

306 Our work provides the first experimental demonstration of alternative regimes in community
307 coalescence, reconciling previously contrasting observations of community-level versus species-
308 level selection. Prior studies have reported both outcomes: some found communities behaving
309 as cohesive units^{22,25}, while others observed species responding independently^{26,29}. Our results
310 suggest that these conflicting observations may reflect differences in interaction strength across
311 experimental systems. For instance, the absence of community-level selection in *in vitro* gut
312 microbiome coalescence experiments^{30,31} is consistent with our framework. Rich media such as
313 BHI are analogous to our Nutr– condition, providing complex and diverse resources while lack-
314 ing high concentrations of readily metabolizable carbon sources. This resource structure reduces
315 both direct resource competition and pH-mediated interactions, thereby weakening interspecies
316 interactions³⁶ and favoring species-level rather than community-level dynamics. Likewise, in-
317 teraction strength may vary systematically across ecosystems: microbial biofilms experience
318 strong metabolic interactions due to high cell densities and shared resources³⁹, whereas mobile
319 macroscopic organisms interact more transiently across larger spatial scales. These differences
320 may explain why community-level selection is more frequently observed in microbial coalescence
321 studies. This framework provides a unified perspective: rather than asking whether communi-
322 ties are cohesive units, we should ask under what conditions they become so, with interaction
323 strength emerging as a key determinant.

324 A growing body of work has identified interaction strength as a key control parameter gov-
325 erning diverse aspects of microbial community dynamics, including diversity^{34,40}, stability^{36,41},
326 coexistence³³, and invasion outcomes^{35,42}. Our results extend this claim to include coalescence,
327 providing further evidence that interaction strength determines when communities exhibit col-
328 lective behavior. The parallel with priority effects is particularly instructive; recent work showed
329 that assembly order shapes final composition only under strong interactions, whereas weak in-
330 teractions lead to convergent outcomes regardless of assembly history^{35,43}. Our coalescence
331 results mirror this pattern—strong interactions preserve parental identity, while weak interac-
332 tions yield convergent Mixtures. Together, these findings reinforce interaction strength as a
333 coarse-grained parameter that predicts history-dependent community dynamics across multiple
334 ecological contexts.

335 In nature, coalescence occurs in richer settings that may shift regimes and outcomes. En-
336 vironmental heterogeneity (temperature, pH buffering, and other physicochemical factors) co-
337 varies with interaction strength and can reshape coalescence across habitats^{10,37,44,45}. In host-
338 associated microbiomes, host filtering, priority effects, and spatial structure further influence
339 successful colonization, making coalescence a useful framework for predicting and steering mi-
340 crobiome transfer^{14,46,47}. Our experiments focus on steady-state outcomes and thus do not
341 capture temporal dynamics such as fluctuating resources, migration pulses, or host responses.
342 Additionally, both our experimental system and theoretical model are dominated by competi-
343 tive interactions; systems with substantial mutualism or facilitation may exhibit qualitatively
344 different dynamics. Incorporating these axes into both theory and experiment will help build a
345 more comprehensive picture of community-level selection across habitats and scales.

346 **4 Methods**

347 **Microbial Strain Library and Culture Conditions**

348 We used a library of 54 bacterial isolates from environmental samples (soil, tree surface, and
349 flower stamen) collected in Cambridge, MA, USA, spanning 29 families across three phyla (Pro-
350 teobacteria, Firmicutes, and Bacteroidota; Extended Data Fig. 1; Supplementary Fig. 1). Iso-
351 lates were purified by serial streaking and stored as glycerol stocks at -80°C . Experiments
352 were conducted in culture medium containing 1 g L^{-1} yeast extract, 1 g L^{-1} soytone, 10 mM
353 sodium phosphate, 0.1 mM CaCl_2 , 2 mM MgCl_2 , 4 mg L^{-1} NiSO_4 , 50 mg L^{-1} MnCl_2 (pH 6.5),
354 supplemented at three nutrient levels—Nutr- (no added glucose/urea), Base (5 g L^{-1} glucose,
355 4 g L^{-1} urea), and Nutr+ (20 g L^{-1} glucose, 16 g L^{-1} urea)—which produce different strengths
356 of interspecific interactions. Communities were grown in $300\text{ }\mu\text{L}$ volumes in 96-well deep-well
357 plates at 25°C with shaking at 800 rpm. Full media composition and culture conditions are
358 provided in Supplementary Methods.

359 **Community Assembly and Coalescence Experiments**

360 Parental communities ($n = 30$) were assembled at three richness levels (6, 12, or 24 species)
361 by sequential assignment of isolates from the strain library, each with two biological replicates.
362 For 6-species and 12-species parental communities, non-overlapping sets were assembled (e.g.,
363 community 1: strains 1–6, community 2: strains 7–12). Communities were stabilized through
364 seven daily serial dilutions ($\times 30$) before coalescence. Coalescence experiments mixed two pre-
365 stabilized parental communities at 1:1 volume ratio, followed by seven additional serial transfers
366 to reach new steady states (Fig. 1C). In total, 83 pairwise coalescence events were performed in
367 Base medium, and additional experiments were conducted across all three nutrient conditions.
368 Full experimental details are provided in Supplementary Methods.

369 **16S rRNA Sequencing**

370 Community composition was measured by 16S rRNA amplicon sequencing (V4 region). DNA
371 was extracted using QIAGEN DNeasy PowerSoil kit, and sequencing was performed at Argonne
372 National Laboratory. Amplicon sequence variants (ASVs) were identified using DADA2⁴⁸ with
373 SILVA 138⁴⁹ as reference. Species richness was defined as ASVs with $\geq 0.1\%$ relative abundance,
374 corresponding to the extinction threshold used in simulations. Raw sequencing reads are avail-

375 able at Dryad (http://datadryad.org/share/LINK_NOT_FOR_PUBLICATION/kQACU7LCmQc1VzfGZk0bS5ZPUVL_grhwah2zvFY4m9s). Full sequencing and data processing details are provided in
376
377 Supplementary Methods.

378 **Optical Density and pH Measurements**

379 Optical density (OD_{600}) was measured after each 24-hour growth cycle using a plate reader
380 (BioTek Synergy H1). Community pH was measured using a benchtop pH meter (Apera In-
381 struments PH5500). These measurements were used to monitor community growth dynamics
382 and to assess environmental modification by dominant species. Full measurement protocols are
383 provided in Supplementary Methods.

384 **Classification of Coalescence Outcomes**

385 Coalescence outcomes were classified based on similarity between the coalesced community and
386 each parental community. Each community was represented as a normalized abundance vector
387 (see Supplementary Methods for normalization details), and similarity was computed as the dot
388 product between the coalesced community vector and each parental vector. These two sim-
389 ilarity scores place each outcome in a two-dimensional similarity space. From the similarity
390 scores, we derived: (1) retention magnitude, quantifying how much of the coalesced composition
391 is explained by the parental communities; and (2) parental dominance index (PDI), quantify-
392 ing selection preference toward one parental community (0: parental community B dominance,
393 0.5: equal contributions, 1: parental community A dominance). Outcomes were categorized
394 as Restructuring (low retention; substantial ecological reorganization), Mixture (high retention
395 with PDI near 0.5; balanced parental contributions), or Dominance (high retention with PDI
396 near 0 or 1; one parental community overwhelms the other). To assess whether Dominance re-
397 flects community-level selection, we computed pairwise selection correlations measuring whether
398 species from the same parental community share selection outcomes during coalescence. Full
399 mathematical framework is provided in Supplementary Methods.

400 **Lotka–Volterra Simulations**

401 Community dynamics were modeled using generalized Lotka–Volterra (gLV) equations (Eq. 2).
402 We fixed growth rates to 1 and self-interaction coefficients $\alpha_{ii} = 1$, and drew off-diagonal com-
403 petition coefficients from a uniform distribution $\mathbb{U}(0, 2\mu)$ with mean μ , which controls mean

404 interaction strength. From a pool of 54 species, we randomly generated two parental commu-
405 nities of 12 species each with no shared species. Communities were equilibrated numerically
406 (species below 0.1% relative abundance threshold set to zero), then mixed pairwise at equal
407 proportions to simulate coalescence. Each simulation used independently sampled interaction
408 matrices to explore diverse ecological contexts. Full simulation parameters and robustness anal-
409 yses are provided in Supplementary Methods.

410 **Pairwise Invasion Assays**

411 To empirically estimate interaction strength, we performed pairwise invasion assays among the
412 12 most abundant isolates. Each pair was tested in both directions (resident:invader = 95:5)
413 and propagated through seven daily dilution cycles across all three nutrient conditions. Final
414 compositions were determined by colony counting. An invasion was scored as failed if the invader
415 remained below 1% relative abundance. Pairwise outcomes were then classified as coexistence
416 (both isolates above 10% in both directions), exclusion (the same isolate drove its competitor
417 below 1% in both directions), or bistability (each isolate excluded the other when resident).
418 The fraction of failed invasions served as a proxy for mean interaction strength (Fig. 4B). Full
419 experimental details are provided in Supplementary Methods.

420 **Natural Sample-Derived Communities**

421 We performed coalescence experiments using communities derived from six natural environmen-
422 tal samples (soil, compost, decomposing organic matter) collected in Cambridge, MA. Unlike
423 synthetic communities assembled from isolated strains, these communities retain complex species
424 assemblages from their native habitats. Samples were enriched through seven serial dilution
425 cycles to establish stable communities, then 15 pairwise coalescence events (each with two bi-
426 ological replicates, $n = 30$ per condition) were conducted across all three nutrient conditions.
427 Full experimental details are provided in Supplementary Methods.

428 **Statistical Analyses**

429 Statistical significance was defined at $p < 0.05$. Paired t -tests compared mean interaction
430 strengths before and after assembly. Permutation tests (1,000 permutations) assessed pairwise
431 selection correlations. Mann-Whitney U tests compared experimental values against null distri-
432 butions. Chi-square tests for trend assessed outcome fraction shifts across nutrient conditions.

433 Fisher's exact test compared categorical outcomes between conditions. Linear regression quan-
434 tified predictability of coalescence outcomes from dominant-species competition (R^2 reported).
435 For figures requiring error bars, the mean and s.e.m. are presented, with specific test details
436 provided in each legend. Full statistical methods are provided in Supplementary Methods.

437 **Data Availability**

438 Isolates and communities are available upon request. All data are available in the Supplementary
439 Information and via Dryad at http://datadryad.org/share/LINK_NOT_FOR_PUBLICATION/k
440 [QACU7LCmQc1VZfGZk0bS5ZPUVL_grhwah2zvFY4m9s](https://doi.org/10.5061/zenodo.4500000/QACU7LCmQc1VZfGZk0bS5ZPUVL_grhwah2zvFY4m9s).

441 **Code Availability**

442 All codes used for simulation and analysis are available via GitHub at <https://github.com/J>
443 [inyeop3110/interspecies-interaction-derive-Community-Level-Selection](https://github.com/inyeop3110/interspecies-interaction-derive-Community-Level-Selection).

444 **Acknowledgements**

445 J.G. acknowledges funding support from the Schmidt Polymath Award and the Sloan Founda-
446 tion.

447 **Author Contributions**

448 J.Y.S., J.H. and J.G. conceived the study. J.Y.S. and J.H. performed the experiments and the
449 theoretical modeling. J.Y.S. analyzed the data. All authors wrote and edited the manuscript.

450 **Competing Interests**

451 The authors declare no competing interests.

452 **Additional Information**

453 Supplementary Information is available for this paper.

454 Correspondence to Jeff Gore (gore@mit.edu).

455 **References**

456 [1] Clements, F. E. Plant succession: An analysis of the development of vegetation. *Carnegie*
457 *Institution of Washington Publication* **242**, 1–512 (1916).

458 [2] Clements, F. E. Nature and structure of the climax. *Journal of Ecology* **24**, 252–284 (1936).

459 [3] Odum, E. P. The strategy of ecosystem development. *Science* **164**, 262–270 (1969).

460 [4] Lovelock, J. E. *Gaia: A New Look at Life on Earth* (Oxford University Press, Oxford,
461 1979).

462 [5] Wilson, D. S. & Sober, E. Reviving the superorganism. *Journal of Theoretical Biology* **136**,
463 337–356 (1989).

464 [6] Gleason, H. A. The individualistic concept of the plant association. *The American Midland
465 Naturalist* **21**, 92–110 (1939).

466 [7] Cain, S. A. Characteristics of natural areas and factors in their development. *Ecological
467 Monographs* **17**, 185–200 (1947).

468 [8] Mason, H. L. Evolution of certain floristic associations in western north america. *Ecological
469 Monographs* **17**, 201–210 (1947).

470 [9] Whittaker, R. H. Gradient analysis of vegetation. *Biological Reviews* **42**, 207–264 (1967).

471 [10] Rillig, M. C. *et al.* Interchange of entire communities: Microbial community coalescence.
472 *Trends in Ecology & Evolution* **30**, 470–476 (2015).

473 [11] Lechón-Alonso, P., Clegg, T., Cook, J., Smith, T. P. & Pawar, S. The role of competition
474 versus cooperation in microbial community coalescence. *PLoS Computational Biology* **17**,
475 e1009584 (2021).

476 [12] Huet, S. *et al.* Experimental community coalescence sheds light on microbial interactions
477 in soil and restores impaired functions. *Microbiome* **11**, 42 (2023).

478 [13] Bresciani, L., Custer, G. F., Koslicki, D. & Dini-Andreote, F. Interplay of ecological pro-
479 cesses modulates microbial community reassembly following coalescence. *The ISME Journal*
480 **19**, wraf041 (2025).

481 [14] Liu, X. & Salles, J. F. Drivers and consequences of microbial community coalescence. *The*
482 *ISME Journal* **18**, wrae179 (2024).

483 [15] Sarkar, A. *et al.* Microbial transmission in the social microbiome and host health and
484 disease. *Cell* **187**, 17–43 (2024).

485 [16] Xiao, Y., Angulo, M. T., Lao, S., Weiss, S. T. & Liu, Y.-Y. An ecological framework to
486 understand the efficacy of fecal microbiota transplantation. *Nature Communications* **11**,
487 3329 (2020).

488 [17] Gupta, S., Allen-Vercoe, E., Bhattacharya, A. & Petrof, E. O. Fecal microbiota transplan-
489 tation: in perspective. *Therapeutic Advances in Gastroenterology* **9**, 229–239 (2016).

490 [18] Gilpin, M. Community-level competition: Asymmetrical dominance. *Proceedings of the*
491 *National Academy of Sciences* **91**, 3252–3254 (1994).

492 [19] Debray, R. *et al.* Priority effects in microbiome assembly. *Nature Reviews Microbiology* **20**,
493 109–121 (2022).

494 [20] Venturelli, O. S. *et al.* Deciphering microbial interactions in synthetic human gut micro-
495 biome communities. *Molecular Systems Biology* **14**, e8157 (2018).

496 [21] Maynard, D. S., Miller, Z. R. & Allesina, S. Predicting coexistence in experimental ecolog-
497 ical communities. *Nature Ecology & Evolution* **4**, 91–100 (2020).

498 [22] Tikhonov, M. Community-level cohesion without cooperation. *eLife* **5**, e15747 (2016).

499 [23] Xie, L., Yuan, A. E. & Shou, W. Simulations reveal challenges to artificial community
500 selection and possible strategies for success. *PLOS Biology* **17**, e3000295 (2019).

501 [24] Xie, L. & Shou, W. Steering ecological-evolutionary dynamics to improve artificial selection
502 of microbial communities. *Nature Communications* **12**, 6799 (2021).

503 [25] Diaz-Colunga, J. *et al.* Top-down and bottom-up cohesiveness in microbial community
504 coalescence. *Proceedings of the National Academy of Sciences* **119**, e2111261119 (2022).

505 [26] Vermeij, G. J. When biotas meet: Understanding biotic interchange. *Science* **253**, 1099–
506 1104 (1991).

507 [27] Brochet, S. *et al.* Niche partitioning facilitates coexistence of closely related honey bee gut
508 bacteria. *eLife* **10**, e68583 (2021).

509 [28] Benton, M. J. & Emerson, B. C. How did life become so diverse? the dynamics of diversifi-
510 cation according to the fossil record and molecular phylogenetics. *Palaeontology* **50**, 23–40
511 (2007).

512 [29] Van der Gucht, K. *et al.* The power of species sorting: Local factors drive bacterial commu-
513 nity composition over a wide range of spatial scales. *Proceedings of the National Academy*
514 *of Sciences* **104**, 20404–20409 (2007).

515 [30] Goldman, D. A. *et al.* Competition for shared resources increases dependence on initial
516 population size during coalescence of gut microbial communities. *Proceedings of the National*
517 *Academy of Sciences* **122**, e2322440122 (2025).

518 [31] Walton, S. J. *et al.* Community coalescence reveals strong selection and coexistence within
519 species in complex microbial communities. *bioRxiv* (2025).

520 [32] May, R. M. Will a large complex system be stable? *Nature* **238**, 413–414 (1972).

521 [33] Grilli, J. *et al.* Feasibility and coexistence of large ecological communities. *Nature Commu-*
522 *nications* **8**, 14389 (2017).

523 [34] Hu, J., Amor, D. R., Barbier, M., Bunin, G. & Gore, J. Emergent phases of ecological
524 diversity and dynamics mapped in microcosms. *Science* **378**, 85–89 (2022).

525 [35] Hu, J., Barbier, M., Bunin, G. & Gore, J. Collective dynamical regimes predict invasion
526 success and impacts in microbial communities. *Nature Ecology & Evolution* **9**, 406–416
527 (2025).

528 [36] Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity
529 and stability in microbial communities. *Nature Ecology & Evolution* **4**, 376–383 (2020).

530 [37] Castledine, M., Sierociński, P., Padfield, D. & Buckling, A. Community coalescence: An
531 eco-evolutionary perspective. *Philosophical Transactions of the Royal Society B: Biological*
532 *Sciences* **375**, 20190252 (2020).

533 [38] Ratzke, C. & Gore, J. Modifying and reacting to the environmental ph can drive bacterial
534 interactions. *PLOS Biology* **16**, e2004248 (2018).

535 [39] Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition
536 in biofilms. *Nature Reviews Microbiology* **14**, 589–600 (2016).

537 [40] Marsland III, R. *et al.* Available energy fluxes drive a transition in the diversity, stability, and
538 functional structure of microbial communities. *PLoS Computational Biology* **15**, e1006793
539 (2019).

540 [41] Allesina, S. & Tang, S. Stability criteria for complex ecosystems. *Nature* **483**, 205–208
541 (2012).

542 [42] Kurkjian, H. M., Akbari, M. J. & Momeni, B. The impact of interactions on invasion
543 and colonization resistance in microbial communities. *PLoS Computational Biology* **17**,
544 e1008643 (2021).

545 [43] Fukami, T. Historical contingency in community assembly: Integrating niches, species
546 pools, and priority effects. *Annual Review of Ecology, Evolution, and Systematics* **46**, 1–23
547 (2015).

548 [44] Rillig, M. C. & Mansour, I. Microbial ecology: Community coalescence stirs things up.
549 *Current Biology* **27**, R1280–R1282 (2017).

550 [45] Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: Con-
551 necting spatial organization to function. *Cell Host & Microbe* **21**, 433–442 (2017).

552 [46] Smillie, C. S. *et al.* Strain tracking reveals the determinants of bacterial engraftment in the
553 human gut following fecal microbiota transplantation. *Cell Host & Microbe* **23**, 229–240.e5
554 (2018).

555 [47] Rocca, J. D., Muscarella, M. E., Peralta, A. L., Izabel-Shen, D. & Simonin, M. Guided by
556 microbes: Applying community coalescence principles for predictive microbiome engineer-
557 ing. *mSystems* **6**, e00538–21 (2021).

558 [48] Callahan, B. J. *et al.* Dada2: High-resolution sample inference from illumina amplicon
559 data. *Nature Methods* **13**, 581–583 (2016).

560 [49] Quast, C. *et al.* The silva ribosomal rna gene database project: improved data processing
561 and web-based tools. *Nucleic Acids Research* **41**, D590–D596 (2013).