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ABSTRACT

Knowledge-graph retrieval-augmented generation (KG-RAG) couples large lan-
guage models (LLMs) with structured, verifiable knowledge graphs (KGs) to re-
duce hallucinations and expose reasoning traces. However, many KG-RAG sys-
tems compose multiple LLM modules (e.g planning, reasoning, and responding),
inflating inference cost and binding behavior to a specific target KG. To address
this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-
RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single
agent that interacts with KGs as its environment, learning to retrieve at each
step and incorporating the retrieved information into its reasoning and genera-
tion. The process is optimized through end-to-end RL. In controlled experiments
across Knowledge-Graph Question Answering(KGQA) benchmarks, our method
demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 im-
proves answer accuracy with fewer generation tokens than prior multi-module
workflow methods that use larger foundation or fine-tuned models. Furthermore,
KG-R1 enables plug and play: after training, it maintains strong accuracy on
new KGs without modification. These properties make KG-R1 a promising KG-
RAG framework for real-world deployment. Our code is publicly available at
§ anonymous.4open.science/r/RL KG-4B4E.

1 INTRODUCTION

Retrieval-augmented generation (RAG) has gained popularity as a way to enhance large language
models (LLMs) with access to external knowledge, thereby reducing hallucinations and improving
accuracy in knowledge-intensive tasks. Recent research has extended this idea to knowledge graph
retrieval-augmented generation (KG-RAG), where knowledge graphs (KGs) are leveraged as the
retrieval source. A KG is a structured representation of knowledge in the form of entities (nodes)
and their relationships (edges) that encodes factual knowledge in a graph format. Augmenting LLMs
with KGs has proven effective not only in mitigating the knowledge bottleneck, but also in improving
reasoning performance over complex multi-hop relations and enhancing adaptation to continually
evolving real-world information (Sun et al., 2024; Luo et al., 2024; Wang et al., 2025c). These prop-
erties make KG-RAG especially promising in high-stakes domains, such as medical consultation
and legal analysis (Xiong et al., 2023; Cui et al., 2024).

As shown in Figure 1, typical KG-RAG adopts a modular workflow consisting of four pri-
mary subtasks: Retrieval to query facts from KGs, Reasoning to process the retrieved infor-
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Figure 1: Overview of KG-R1, a multi-turn agentic framework for KG-RAG trained with reinforce-
ment learning. The framework enables cost-efficient inference and demonstrates strong cross-KG
transferability.
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mation, Reviewing to verify logical consistency, and Responding to synthesize the final an-
swer (Baek et al., 2023; Sun et al., 2024; Luo et al., 2024; Wang et al., 2025c). Each dis-
tinct subtask is handled by specialized LLM modules through two main methods: (i) prompt-
based with task-specific instructions, often including in-context demonstrations (Baek et al., 2023);
and (ii) fine-tuned modules tailored to particular tasks (e.g., SPARQL generation (D’Abramo
et al., 2025; Lee & Shin, 2024) or relation extraction (Yao et al., 2019)) on specific KGs.

0

200

400

600

# 
of

 G
en

. T
ok

en
s

295

529
617

302

Efficiency

0.00

0.25

0.50

0.75

Av
g.

 H
it@

1

0.34

0.66 0.68 0.72

Cross-KG Transferability

RoG (Luo et al., 2024)
ToG (Sun et al., 2023)

ReKnoS (Wang et al., 2025)
KG-R1 with Qwen 2.5-3B-it (Ours)

Figure 2: Prior multi-module methods are costly
and do not transfer well across KGs. Left: mean
end-to-end generated tokens per query on We-
bQSP (Yih et al., 2016). Right: average Hit@1
over five out-of-training KGQA datasets (See
Sec. 4.2). KG-R1 achieves both low token cost
and strong cross-KG transferability.

Despite improved reasoning accuracy, the real-
world deployment of such workflows faces two
key challenges, high computational cost and
lack of generalization to new or updated
KGs. First, prompt-based methods that re-
peatedly call large foundation LLMs accumu-
late inference across stages and drive up la-
tency, token usage, and compute (e.g., ToG and
ReKnoS; see left panel of Fig. 2). Second,
these prompted or fine-tuned modules are typ-
ically tuned to a particular KG’s domain and
schema (entity types, relations, constraints), of-
ten via curated in-context examples or KG-
specific fine-tuning. As a result, performance
does not transfer reliably when the domain
shifts, the schema changes, or the system is de-
ployed on a new KG (e.g., RoG; see right panel
of Fig. 2).

To tackle these challenges, we introduce KG-R1, an agentic KG-RAG system that employs end-to-
end multi-turn reinforcement learning (Jin et al., 2025; Zeng et al., 2025; DeepSeek-AI, 2025). As
shown in Figure 1, the architecture of KG-R1 has two components: a single LLM agent and a KG
retrieval server (as an environment). The KG retrieval server hosts the knowledge graph along with
a set of retrieval actions. The LLM agent iteratively performs cycles of short reasoning followed by
retrieval actions over multiple turns, with each decision informed by knowledge obtained from the
KG retrieval server, and generates a final answer. Figure 2 demonstrates that KG-R1 achieves both
high efficiency and strong cross-KG transferability simultaneously using a 3B-parameter model,
outperforming prior methods. Our key contributions are summarized as follows:

1. KG-R1 framework. We introduce an agentic KG-RAG system (Section 3) that replaces multi-
module pipelines with a single agent for KG-RAG, running against a lightweight KG server. The
agent alternates between reasoning and retrieval actions over multiple turns, with the end-to-end
trajectory optimized by RL using both turn-wise and outcome-based reward signals. Turn-wise
rewards evaluate individual action effectiveness and adherence to formatting, while global rewards
measure answer quality and retrieval relevance.

2. Efficient inference. By consolidating reasoning and retrieval into a single-agent, near-continuous
workflow, KG-R1 achieves competitive reasoning accuracy with a small-parameter model while
reducing token usage. This lowers latency and computational cost, making deployment feasible
under tight budgets. Experiments demonstrate improved performance and efficiency compared to
traditional multi-module workflows (Section 4.1).

3. Plug-and-play transferability across diverse KGs. KG-R1 easily transfers to diverse KGs
and maintains strong KG-RAG performance (Section 4.2). The trained KG-R1 agent generalizes to
new KGs without modification—backend KGs can be swapped without changing prompts or hyper-
parameters, and without fine-tuning. This enables zero-shot transfer to unseen knowledge graphs.

2 RELATED WORK

KG-RAG. Knowledge Graph Retrieval-Augmented Generation (KG-RAG) augments LLMs with
structured knowledge graphs (KGs) to improve factuality and compositional reasoning. Early work
grounds LLMs’ generation by translating natural-language questions into executable graph queries

2
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(e.g., SPARQL/Cypher), retrieving relevant subgraphs or answers, and feeding them back to the
model (Ouyang et al., 2022; Izacard et al., 2023; Lee & Shin, 2024). More recent approaches
adopt a modular LLM pipeline over KGs, interleaving natural-language reasoning with multi-stage
planning, path search, and execution, where each stage uses a prompted or fine-tuned LLM (Luo
et al., 2024; Sun et al., 2024; Wang et al., 2025c). Despite these advances, most systems rely on
hand-engineered modules or prompt heuristics tied to a specific KG schema, which induce cost
inefficiency and limit generalization. These challenges motivate our KG-R1 framework: a single-
agent KG-RAG approach that improves efficiency and transfers well to new KGs.

Multi-turn RL for LLM. Reinforcement learning (RL) has become central to equipping LLMs with
step-by-step (chain-of-thought) reasoning behavior (OpenAI et al., 2024; DeepSeek-AI, 2025). RL-
enhanced models yield substantial gains in math and coding (Le et al., 2022; Chervonyi et al., 2025),
and broader complex reasoning tasks. More recently, RL has been applied to agentic LLMs that
invoke external tools (e.g., bash terminals and APIs) or interact with knowledge bases, improving
tool use (Qin et al., 2024) and retrieval-augmented generation (RAG) (Jin et al., 2025; Wang et al.,
2025a) to facilitate the tool use or RAG. Building on these advances, our work, KG-R1 adopts
end-to-end RL as the core optimization algorithm for agentic KG-RAG framework.

3 KG-R1: AN AGENTIC KG-RAG FRAMEWORK

3.1 PROBLEM DEFINITION

KG–RAG spans many applications, including conversational assistants (Chaudhuri et al., 2021),
recommendation systems (Wang et al., 2025b), and open-domain QA (Zhu et al., 2025). In this work,
we instantiate and evaluate our approach on Knowledge Graph Question Answering (KGQA), which
provides a grounded testbed for KG-RAG: ground-truth answers are tied to a fixed KG, evaluation
is verifiable and intermediate graph reasoning is interpretable. We now formalize knowledge graphs
and KGQA tasks.

Knowledge graphs. A knowledge graph (KG) is a graph-structured representation of real-world
knowledge that encodes factual information as triples of entities and their relationships. We denote
a KG as G = { ⟨e, r, e′⟩ | e, e′∈E , r∈R}, where E andR denote the sets of entities and relations,
respectively, and each triple ⟨e, r, e′⟩ represents a directed edge from entity e to entity e′ via relation
r. For example, there is an edge capital of from entity Springfield to entity Illinois.

Knowledge Graph Question Answering (KGQA) is a reasoning task based on KGs. Consider
a dataset D = {(q,G,Aq)}, where q is a natural language question, G is a KG, and Aq ⊆ E is
the ground-truth answer set paired with the question. For each gold answer e∗ ∈ Aq , there exist
one or more reasoning paths in G that connect anchor entities mentioned in q to e∗. A reasoning
path is a sequence of labeled edges r1, . . . , rℓ ∈ R instantiated by entities e0, . . . , eℓ such that
Z : e0

r1−→ e1
r2−→ · · · rℓ−→ eℓ, where e0 is an anchor entity mentioned in q and eℓ = e∗ ∈ Aq ,

and Z(q,G,Aq) denote the set of all valid reasoning paths for question q over G with respect to
ground-truth answers Aq . In solving KGQA, given q and G, a model attempts to discover a subset
of valid reasoning paths from Z(q,G,Aq) and predicts Âq based on the terminal entities of the
discovered paths. The model’s performance is evaluated by comparing Âq with the ground-truth
Aq . As an example, to answer the question “What is the capital of the U.S. state whose largest city
is Chicago?”, a valid reasoning path is

Chicago located in state−−−−−−−−−−−→ Illinois capital−−−−−→ Springfield

This path belongs to Z(q,G,Aq) and leads to the correct prediction Âq = {Springfield}.

3.2 KG-R1 FRAMEWORK

KG-R1 casts KG-RAG as a multi-turn interaction with a KG interface (KG retrieval server). We
prioritize two design principles. First, we design a single-agent architecture that simplifies deploy-
ment and enables efficient, low-cost inference. Second, we build a schema-agnostic KG retrieval
server that avoids KG-specific assumptions and remains portable across varied KGs. Given a KGQA
dataset D = {(q,G,Aq)}, we set up a KG retrieval server and a KG-R1 agent.

3
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Figure 3: KG-R1 framework: a single LLM agent undergoes multi-turn generation–execution loop
with a schema-agnostic KG retrieval server and responds with the final answer.

KG retrieval server. The server hosts the knowledge graph G and provides a set of retrieval actions
a ∈ Uret that enable graph traversal through 1-hop operations:
Aret =

{
get tail relations, get head relations, get tail entities, get head entities

}
get tail relations(e) := { r ∈ R | ∃e′ ∈ E : (e, r, e′) ∈ G },
get head relations(e′) := { r ∈ R | ∃e ∈ E : (e, r, e′) ∈ G },
get tail entities(e, r) := { e′ ∈ E | (e, r, e′) ∈ G },
get head entities(r, e′) := { e ∈ E | (e, r, e′) ∈ G }.

The retrieval action set Uret is sufficient for realizing any reasoning path Z : e0
r1−→ e1

r2−→ · · · rℓ−→
eℓ as a finite action sequence that arrives at eℓ ∈ Aq (i.e., the terminal entity is in the answer
set). Forward traversal along Z is implemented by get tail entities(ei−1, ri) for i = 1, . . . , ℓ
and backward traversal is implemented by get head entities(ri, ei). Notably, this choice of
the retrieval action set guarantees completeness and schema-free transferability, as formalized by
propositions 3.1 and 3.2, whose proofs are provided in Appendix A.1.

Proposition 3.1 (Retrieval Action Set Completeness). For any reasoning path Z : e0
r1−→ · · · rℓ−→

eℓ in G, there exists an action sequence in Uret of length at most ℓ+1 whose output includes eℓ.
Proposition 3.2 (Schema-Free Transferability). The semantics of Uret depend only on directed
triples (e, r, e′), so any fixed client policy transfers across heterogeneous directed KGs by replacing
G without redefining Uret.

KG-R1 Agent. We model a single LLM agent that interacts with a KG retrieval server in a multi-
turn setting. The agent undergoes initialization followed by a loop of generation and execution
(see Figure 3). At initialization, a lightweight base LLM is configured with an instruction prompt
p (see the box below for the prompt template) containing general reasoning instructions, the user
question q, and the KG retrieval server instructions (Table D.2). At each turn t ≤ H , where H is the
maximum turn limit, the agent first undergoes the generation phase where it produces a response
mt comprising two parts: (1) an internal reasoning wrapped in <think>...</think>, and (2)
an action, which is either a KG retrieval action wrapped in <kg-query>...</kg-query>, or
a final answer wrapped in <answer>...</answer>.

Prompt template for KG-R1
You are a helpful assistant. Answer the given question. You can query from knowledge base provided to
you to answer the question. You can query knowledge up to [H] times. You must first conduct reasoning
inside <think>...</think>. If you need to query knowledge, you can set a query statement between
<kg-query>...</kg-query> to query from knowledge base after <think>...</think>. When you have
the final answer, you can output the answer inside <answer>...</answer>.
KG Query Server Instruction : [KG query server instruction]
Question: [question].
Assistant:

4
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In the following execution phase, we parse mt into an action at ∈ Uret ∪ {Answer} using an
exact-match parser Ψ (i.e., at = Ψ(mt)). If at ∈ Uret, executing it yields an observation ot+1

(i.e., retrieved entities, relations, or an error message in case the action does not generate a valid
retrieval), which is appended to the dialogue context prior to the next turn. If at = Answer,
the interaction terminates: the content inside <answer>...</answer> is extracted and post-
processed (normalization, deduplication, and entity resolution) to produce the predicted answer set
Âq . Given interaction trajectory τ = (p, (m1, o1), . . . , (mt, ot)) with t ≤ H , the KG-R1 agent’s
policy πθ(mt | contextt) is defined over token sequences mt and governs how textual responses are
generated.

3.3 KG-R1 TRAINING WITH RL

Our goal is to find the KG-R1 agent’s policy πθ(mt | contextt) that effectively retreive reasoning
paths on G via multi-turn interaction and generate the accurate answer Âq = Aq . To this end, we
optimize the base LLM with reinforcement learning, using a GRPO-style objective (DeepSeek-AI,
2025) in a multi-turn setting (Qian et al., 2025; Jin et al., 2025; Zeng et al., 2025). Our reward
function combines action-level and outcome-based signals. The overview of the training procedure
refers to Algorithm 1 (Appendix).

Reward Objective. To effectively train the KG-R1 agent, we combine verifiable turn rewards with
outcome-level global rewards. Turn rewards (rturn

t ) provide local signals at each step as the sum
of three components: (i) format validity vfmt(mt) checks that mt contains both reasoning and a
well-formed action at ∈ A; (ii) KG query vkg(at, ot+1) checks that executing at yields meaningful,
schema-valid retrieval in ot+1; and (iii) answer vans(mT ) checks the final answer’s format/consis-
tency on the final turn. the turn rewards are computed as follows with weight wfmt, wkg, wans:

rturnt = wfmt vfmt(mt) + wkg vkg(at, ot+1) + wans vans(mT ). (1)

Global rewards summarize trajectory-level outcomes as the sum of the following: (i) a final-answer
F1 score over the predicted set Âq vs. ground-truth answer set Aq; and (ii) a retrieval score vret that
is 1 if any gold entity appears anywhere in the retrieved information along the executed reasoning
path, and 0 otherwise.

Rglobal = wF1 · F1
(
Âq, Aq

)
+ wret · vret (2)

Group-relative turn-level credit assignment and optimization. To convert rewards into token-
level credit, we use a group-relative, turn-level credit assignment inspired by Zeng et al. (2025).
We collect N rollouts per query q. For each episode τ (n), we compute turn rewards rturn,(n)t and a
global reward Rglobal,(n), and then form turn-specific returns with λ as the normalization factor:

G
(n)
t = r

turn,(n)
t + λRglobal,(n). (3)

Let S={(n, t) : t ≤ T (n)} be the set of all turns across the N rollouts. The turn-level advantage An
t

is calculated using a single group baseline Ḡ that averages over S:

A
(n)
t =

G
(n)
t − Ḡ

σG + ε
where Ḡ = 1

|S|

∑
(n,t)∈S

G
(n)
t , σG =

√
1
|S|

∑
(n,t)∈S

(
G

(n)
t − Ḡ

)2
.

where ε is a small constant for numerical stability.

RL update. Using turn-level credit A(n)
t , we optimize the agent’s policy πθ with a GRPO-style

objective J :

J (θ) = E

[∑
n,t,i

min
(
ρ
(n)
t,i Ã

(n)
t,i , clip

(
ρ
(n)
t,i , 1−ϵ, 1+ϵ

)
Ã

(n)
t,i

)
− βKL

(
πθ(· | h(n)

t,i ) ∥π0(· | h(n)
t,i )

)]
with Ã

(n)
t,i = m

(n)
t,i A

(n)
t . πθ is the current policy, and πθold is the behavior policy used for sampling;

π0 is a fixed reference policy used only for KL regularization (weight β). ρ(n)t,i = exp
(
log πθ(y

(n)
t,i |

h
(n)
t,i )− log πθold(y

(n)
t,i | h

(n)
t,i )

)
is the importance ratio that corrects off-policy sampling at token i. We

maximize J (θ) by gradient ascent. The proposed group-based credit assignment per turn produces
stabilized and effective signals in the multi-turn interaction decisions. We provide comprehensive
ablation studies of each component of our reward design in Section 4.3.
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3.4 CROSS-KG TRANSFER: PLUG-AND-PLAY

We propose a plug-and-play approach for KG-R1 that enables KG–RAG to operate across different
knowledge graphs without retraining. Let πθ|D denote the policy of the KG-R1 agent trained on a
KGQA dataset D = {(q,G,Aq)}. For a new KGQA dataset D∗ = {(q∗, G∗, Aq∗)}, we replace the
backend KG of the retrieval server with G∗ (plug) and evaluate πθ|D onD∗ without any modification
(play). This approach requires no task-specific fine-tuning, data relabeling, or architectural changes.

This plug-and-play capability stems from two design choices in KG-R1. First, the KG server ex-
poses a schema-agnostic action set consisting solely of 1-hop retrieval operations, which are univer-
sally compatible with directed KGs. This contrasts with SPARQL-generation approaches in prior
work that depend on KG-specific syntax and schema knowledge. Second, the agent’s strategy for
retrieving and using KG evidence is learned in a way that is independent of any particular schema,
enabling immediate transfer to new domains.

4 EXPERIMENTS

We assess KG-R1 along two axes. (1) Performance and Efficiency on Trained KGs: We train KG-R1
on the training splits of KGQA benchmarks and measure answer quality and inference cost on their
held-out test splits. (2) Cross-KG transferability: We test how well KG-R1 carries over to KGs out
of training. In both parts, we compare against established baselines to support the KG-R1 results.

4.1 PERFORMANCE AND EFFICIENCY ON TRAINED KGS

Models. We use Qwen2.5-3B-it (Qwen et al., 2025) as our base model. For the other baseline
methods, we use GPT-4o-mini, GPT-3.5, and Llama2-7B-it, following the setups used in prior work.

Datasets. We mainly evaluate KG-R1 in-domain on (1) WEBQSP (Yih et al., 2016)—natural-
language questions over Freebase, mostly 1–2 hop, using the official 3,098/1,639 train/test QA split;
and (2) COMPLEXWEBQUESTIONS (CWQ) (Talmor & Berant, 2018)—compositional, multi-hop
questions over Freebase with a 24,649/3,531 train/test QA split. For scalability, we extract 2-hop
subgraphs for each question as in RoG (Luo et al., 2024). See Appendix B for detailed sources.

Metrics. Following prior work (Luo et al., 2024; Sun et al., 2024) to evaluate KGQA perfor-
mance, we use F1 score to consider multiple valid predictions over answer sets and Hit@1 (1 if
the gold answer appears in the single search, 0 otherwise). For efficiency, we report generated to-
kens (completion-only), measured end-to-end per query, aggregated across all turns (1 . . . H). This
serves as a proxy for inference time and compute cost. For fair comparison, all token counts are
computed with the Qwen2.5 tokenizer. We also report the number of modules to compare workflow
complexity, and we analyze single-query latency and batched throughput on a single GPU node.

Baselines. We compare three classes of approaches: (1) LLM-only methods that do not access an
external KG—Vanilla and Chain-of-Thought (CoT) prompting; (2) prior KG-augmented pipelines:
ROG (Luo et al., 2024), which uses a fine-tuned modular workflow with LLaMA2-7B-it as the
backbone, and TOG (Sun et al., 2024) and REKNOS (Wang et al., 2025c), which use a prompt-based
modular workflow with GPT-3.5; and (3) our method KG-R1. For LLM-only baselines, we employ
LLM-as-Judge (Zheng et al., 2023) using gpt-4o-mini to semantically match predicted answers to
ground truth. Full details for baselines are provided in Appendix C.

N-run beam search with KG-R1. Prior works often incorporated k-beam search (Lan & Jiang,
2020; Sun et al., 2024; Luo et al., 2024), retrieving k reasoning paths for enhanced search range
on KGs and reporting improved performance. Following this idea, we propose KG-R1 N-run beam
search : we run N independent generation per question and collect predicted answer sets {Â(i)

q }Ni=1.
We then take the union Âq,N-runs =

⋃N
i=1 Â

(i)
q , and compute F1 and Hit@1 on this union. This

simple “N -beam” setup broadens search without extra orchestration, and cost scales roughly linearly
with N since runs can be executed in parallel.

Implementation details. We use VERL (Sheng et al., 2024) and vLLM-backed decoding (Kwon
et al., 2023) for implementing the KG-R1 agent. Training uses distributed optimization with gradient
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Table 1: Performance and efficiency comparison of KGQA methods on WebQSP and CWQ datasets.
The max turn number set to H = 5. All scores are percentages.

Method Model Modules
WebQSP CWQ

Performance Efficiency Performance Efficiency

F1 Hit@1 Total Gen F1 Hit@1 Total Gen

LLM-only Methods
Vanilla Qwen2.5-3B-it 1 29.4 46.6 95 30 16.6 21.1 104 42
Vanilla Qwen2.5-7B-it 1 33.2 50.9 95 67 20.7 25.7 104 92
Vanilla LLaMA2-7B-it 1 37.4 54.5 114 255 20.7 24.8 123 255
COT Qwen2.5-3B-it 1 30.6 47.6 131 192 17.3 21.4 140 216
COT Qwen2.5-7B-it 1 35.3 53.5 131 194 22.5 27.1 140 212
COT LLaMA2-7B-it 1 33.8 51.6 165 255 19.0 23.1 174 255

LLM+KG Methods
RoG LLaMA2-7B-it 2 70.8 85.7 1.2K 295 56.2 62.6 1.1K 266
ToG GPT-3.5 4 72.8 76.2 3.5K 529 52.9 57.1 3.7K 520
ToG 2.0 GPT-3.5 5 74.5 77.8 39.K 605 65.8 68.9 3.8K 650
ReKnoS GPT-4o-mini 3 73.7 81.1 3.1K 617 64.7 66.8 4.1K 752

KG-R1 (Our Methods)
KG-R1 (1 run) Qwen2.5-3B-it 1 77.5 84.7 3.2K 302 70.9 73.8 3.3K 377
KG-R1 (3 runs) Qwen2.5-3B-it 1 85.8 91.7 9.7K 906 81.0 83.9 10.0K 1.1K

checkpointing and offloading. Unless stated, we set H = 5 turns and N=16 rollouts per query.
Additional implementation details (e.g., hyper-parameters) are provided in Appendix D.4.

4.1.1 KG-R1 TRAINING STABILITY AND EFFECTIVENESS

Figure 4 shows steady F1 improvement that
plateaus after convergence during KG-R1 train-
ing on WebQSP and CWQ. The validation F1
scores track the training curve, indicating the
agent learns generalization. Results are repro-
ducible across three random seeds (Figure 6, Ap-
pendix), showing strong convergence with low
variance. Overall, KG-R1 training yields stable,
reproducible gains in end-to-end KG-RAG perfor-
mance.

0 200 400
Training Steps

0.00

0.25

0.50

0.75

1.00

F1
 S

co
re

WebQSP

Training F1
Validation F1

0 200 400
Training Steps

0.00

0.25

0.50

0.75

1.00

F1
 S

co
re

CWQ

Figure 4: F1 score over KG-R1 training
on WebQSP and CWQ for Qwen2.5-3B-it.
Training (blue) and validation (red).

4.1.2 INFERENCE ACCURACY AND EFFICIENCY RESULTS

A1. KG-R1 demonstrates strong accuracy on trained KGs. Table 1 reports accuracy and ef-
ficiency. On both WebQSP and CWQ, a single run (N=1) of KG-R1 achieves competitive F1
and Hit@1 compared with non-KG and prior KG methods, including those using larger founda-
tion models. With three runs with beam search, KG-R1 surpasses prior LLM+KG systems that
also use k-beam search by a clear margin (WEBQSP: F1 77.5→85.8, Hit@1 84.7→91.7; CWQ:
F1 70.9→81.0, Hit@1 73.8→83.9). Overall, these results show that a lightweight KG-R1 agent
delivers strong KG-RAG performance relative to previous baselines.

A2. KG-R1 achieves efficient inference. Table 1 reports efficiency (generation tokens and num-
ber of modules). For a single run (N=1), KG-R1 produces ∼60 generation tokens per turn
(300–370 tokens at H=5), substantially below prior prompt-based LLM+KG systems (e.g., ToG
∼520 and ReKnoS ∼600–650) and comparable to the fine-tuned method RoG (∼250–300). This
small generation-token budget, coupled with a lightweight model, implies improved throughput and
latency. Under N=1, the total tokens are comparable to prior methods, indicating a similar mem-
ory (KV-cache) footprint. With three-run beam search (N=3), token usage scales nearly linearly,
exposing a tunable accuracy–efficiency trade-off via N .

A3. Latency and throughput analysis. On a single NVIDIA H100 GPU, we measure (i) single-
query end-to-end latency and (ii) batched throughput. The single-query latency averages 6.4 ± 1.5
s per question. Batched throughput reaches 3.7 samples per second at batch size 64. The results
suggest the feasibility of KG-R1’s single-node deployment. See Appendix E.2 for the full results.
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Table 2: Zero-shot cross-KG transferability of KG-R1. Agents are trained on WebQSP or CWQ and
evaluated on new benchmarks by swapping only the KG-backend server (no policy retraining). AVG.
is averaged across QA samples. The max turn number set to H = 5. All scores are percentages.

Freebase-based Wikidata-based Temporal

Method Trained KG SimpleQA GrailQA T-REx QALD-10en MultiTQ AVG.
F1 / Hit@1 F1 / Hit@1 F1 / Hit@1 F1 / Hit@1 F1 / Hit@1 F1 / Hit@1

LLM-only Methods
Vanilla Qwen 2.5 3B-IT 13.7 / 13.7 15.9 / 15.9 24.4 / 24.4 23.8 / 23.8 2.2 / 5.4 19.4 / 19.8
CoT Qwen 2.5 3B-IT 10.9 / 10.9 18.2 / 18.2 22.0 / 22.0 25.9 / 25.9 1.9 / 3.9 18.0 / 18.2

LLM+KG Methods

KG-specific Baselines 79.61/80.61

76.12/77.12
84.43/79.13

64.94/59.64
— / 85.15 49.86/50.86

62.27/63.27
— / 79.78

— / 38.09

RoG 13.5 / 43.5 6.4 / 23.7 8.1 / 36.4 11.4 / 44.3 3.6 / 8.7 8.1 / 34
ToG 50.2 / 53.6 63.9 / 68.7 79.3 / 76.4 48.7 / 50.2 25.1 / 27.9 66.2 / 65.9
ReKnoS 50.7 / 52.9 65.8 / 71.9 81.4 / 78.9 50.6 / 53.8 28.5 / 31.1 68.2 / 68.2

KG-R1 (Our Methods)
KG-R1 (1 run) WebQSP 59.1 / 59.1 32.8 / 38.5 80.5 / 84.5 51.9 / 53.4 21.6 / 31.4 64.0 / 68.3
KG-R1 (1 run) CWQ 64.6 / 64.7 42.8 / 50.2 81.3 / 85.6 55.9 / 57.7 27.1 / 38.9 67.2 / 72.1
KG-R1 (3 runs) WebQSP 69.1 / 69.1 44.6 / 52.1 84.6 / 88.8 61.3 / 62.8 33.5 / 45.7 70.9 / 75.8
KG-R1 (3 runs) CWQ 73.1 / 73.1 52.8 / 61.0 86.8 / 91.5 63.9 / 65.5 36.2 / 48.4 74.1 / 79.4

1SPARKLE 2GETT-QA 3SG-KBQA 4ARG-KBQA 5ATLAS 6COT-SPARQL 7DFSL-MQ 8Prog-TQA 9ARI ; see Table 7 for references.

4.2 CROSS-KG TRANSFER VIA PLUG-AND-PLAY

In this subsection, we evaluate the plug-and-play approach (Sec. 3.4) for zero-shot generalization of
our KG-R1 agent on knowledge graphs outside its training distribution.

Datasets We evaluate the plug-and-play approach on diverse KGQA benchmarks spanning three
categories of KGs. (1) Freebase type: SimpleQA (Bordes et al., 2015) and GrailQA (Gu et al., 2021),
which share the Freebase KG but differ in question complexity and reasoning path distributions. (2)
Wikidata type: T-REx (Elsahar et al., 2018) and QALD-10en (Usbeck et al., 2023) for cross-schema
generalization. (3) Temporal reasoning benchmark: MultiTQ (Chen et al., 2023), which requires
reasoning over the ICEWS temporal KG (Boschee et al., 2015) at day, month, and year granularities.
Appendix B provides a summary of dataset sources, schema, and evaluation splits.

Baselines For LLM-only methods, we evaluate (i) Vanilla and (ii) Chain-of-Thought (CoT) prompt-
ing with Qwen2.5–3B-it. For LLM+KG methods, we report results for RoG, ToG, and ReKnoS
without modifying their modules (i.e prompts and models). In addition, for each KGQA bench-
mark, we include one or two recent state-of-the-art KG-specific methods (trained/tuned on the target
dataset with task-specific pipelines) and use their published test-set scores. Full baseline details are
provided in Appendix C.3.

A4. KG-R1 transfers across diverse types of KGs. Table 2 reports zero-shot, plug-and-play
results. For comparability, we report AVG., the F1/Hits@1 averaged across the five KGQA datasets,
weighted by QA counts. KG-R1 (1 run) substantially outperforms LLM-only baselines using the
same base model—Vanilla (19.4/19.8 F1/Hits@1) and CoT (18.0/18.2)—reaching 64.0/68.3 when
trained on WebQSP and 67.2/72.1 when trained on CWQ. The gains hold not only on Freebase-
based QA but also on Wikidata and Temporal benchmarks, indicating that reinforcement-learned
KG-RAG transfer across diverse KGs rather than narrow, in-domain improvements.

A5. KG-R1 achieves accurate inference comparable to LLM+KG baselines. Against LLM+KG
baselines, KG-R1 (N=1) is slightly better on average: ToG (66.2/65.9) and ReKnoS (68.2/68.2).
Notably, KG-R1, with a 3B model, delivers higher Hits@1 than both ToG and ReKnoS that uses
strong foundation models. Increasing to N=3 runs boosts performance to 74.1/70.4 (CWQ-trained),
making KG-R1 comparable to KG-specific baselines on average. We observe that RoG collapses
(0/0 average) revealing brittle, schema-specific planning with fine-tuned model that does not trans-
fer. Overall, KG-R1 attains strong transferability among plug-and-play methods with a lightweight
model, supporting its practicality for real-world KG-RAG deployment across diverse KGs.

A6. Training data on transferability. KG-R1 models trained on CWQ consistently outperform
WebQSP-trained variants across all transfer targets, averaging 1–5% higher F1 and Hits@1. Given
that CWQ provides a larger training set with greater multi-hop complexity than WebQSP, this sug-
gests that exposure to more complex and diverse reasoning patterns yields superior generalization.
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4.3 ABLATION STUDIES

We conduct ablation studies for the three core components of KG-R1: reward design (Section 3.3),
RL algorithm (Section 3.3), and KG-server implementation (Section 3.2) and base LLM size. We
train Qwen-2.5-3B-it on WEBQSP and CWQ with maximum turn number H = 5 and report final
step performance(F1/Hit@1/Ret.rate in Table 3). The training curves are shown in Figures 8, 9.

Table 3: Ablation studies of KG-R1 components on CWQ and WebQSP datasets.

Method WebQSP CWQ
F1 Hit@1 Ret.Rate F1 Hit@1 Ret.Rate

KG-R1 Default
KG-R1 77.2 84.3 76.8 66.8 69.7 51.4

Reward Ablation
w/o Turn Rewards 67.1 (-13.1%) 76.0 (-9.8%) 68.1 51.9 (-22.3%) 52.9 (-24.1%) 44.7
w/o Turnwise Advantage 49.6 (-35.8%) 61.2 (-27.4%) 22.8 63.5 (-4.9%) 64.5 (-7.5%) 49.4
w/o Retrieval Reward 45.8 (-40.6%) 57.7 (-31.5%) 18.6 66.0 (-1.2%) 67.0 (-3.9%) 47.2

Other Ablations
w PPO 0.0†

(-100.0%) 0.0 (-100.0%) 0.0 0.0†
(-100.0%) 0.0 (-100.0%) 0.0

w/o Hierarchical Rel. Retr. 76.8 (-0.6%) 83.1 (-1.5%) 76.0 55.5 (-16.9%) 58.6 (-15.9%) 39.7
w Qwen-2.5-7B-it 79.6‡

(+3.1%) 86.6 (+2.7%) 83.4 (+8.6%) 65.6‡
(-1.8%) 68.7 (-1.4%) 58.8 (+14.4%)

† PPO training crashed. ‡ Peak values before 7B model training collapse.

A7. Reward function. First, removing turn-level rewards yields the largest drop on both WebQSP
(13.1% / 9.9% in F1 score and Hit@1, respectively) and CWQ (22.3% / 24.1%), highlighting the im-
portance of per-turn validity/effectiveness signals. Next, disabling the turn-wise advantage calcula-
tion produces a substantial decline on WebQSP (35.8% / 27.4%) but only a moderate drop on CWQ
(4.9% / 7.5%), indicating that turn-specific learning signals matter more for certain datasets. Fi-
nally, removing the retrieval reward significantly impacts WebQSP (40.7% / 31.5%) but marginally
affects CWQ (1.2% / 3.9%), though it substantially reduces the retrieval success rate of gold entities
(Ret.Rate) on both datasets, suggesting that it is essential for motivating exploration of the KG.

A8. RL algorithm (GRPO vs. PPO). Replacing GRPO with vanilla PPO (Ouyang et al., 2022)
results in learning collapse (0.0 across all metrics). Under PPO, we observe reward hacking (see
examples in Appendix E.3.3): the agent fabricates ”retrieved” content matching expected formats to
earn reward. Since PPO’s value critic (another LLM) cannot distinguish genuine KG retrievals from
hallucinations, its advantage estimates become unstable, driving training collapse. This underscores
the importance of relative advantage methods like GRPO for multi-step reasoning.

A9. Retrieval format. In our standard KG-R1 setup, one-hop relations retrieved by
get head relations and get tail relations are appended to the agent’s context as a flat,
comma-separated list (e.g., “rel1, rel2, . . . ”). This can lead to excessive token consumption when
many relations are retrieved. Because Freebase relations use a compositional format (e.g., “do-
main.type.property”), we tested a hierarchical relation retrieval that groups relations into a tree to
reduce redundancy (see Appendix E.3.2). Our ablation studies show that switching from flat lists to
a hierarchical format reduces performance—WebQSP shows 0.5% drop, while CWQ experiences
16.9% drop. These results suggest that despite its higher token usage, the flat retrieval format pro-
vides more direct access to relation information, which proves critical for training.

A10. Model scale. The 7B model improves more quickly than the 3B model but exhibits training
collapse (around 350 steps on WebQSP and 200 steps on CWQ). This aligns with reports that fast
distribution shift during GRPO—amplified by larger models and higher update rates—drives entropy
collapse and model divergence (Jin et al., 2025; Liu et al., 2025).

5 CONCLUSION

We propose KG-R1, a single-agent, multi-turn KG-RAG framework in which one LLM queries a
lightweight KG server and is optimized via RL. Across KG-augmented QA benchmarks, KG-R1
attains strong accuracy while using markedly fewer tokens and lower inference cost than prior work.
It also supports plug-and-play transfer, retaining robust performance across KGs. Together, these
results position KG-R1 as a practical and deployable KG-RAG system for real-world use.
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APPENDIX

A THEORETICAL PROOFS

A.1 COMPLETENESS AND TRANSFERABILITY OF THE KG-SERVER

Here we provide robust proofs for completeness and transferability of Uret in our KG retrieval server.

Preliminaries. Let G = {(e, r, e′) | e, e′ ∈E , r∈R} be a directed KG. Define the KG-R1 action
set

Uret =

{
get tail relations, get head relations,

get tail entities, get head entities

}
with the following semantics for any (e, r, e′) ∈ G:

get tail relations(e) := { r ∈ R | ∃e′ ∈ E : (e, r, e′) ∈ G },

get head relations(e′) := { r ∈ R | ∃e ∈ E : (e, r, e′) ∈ G },

get tail entities(e, r) := { e′ ∈ E | (e, r, e′) ∈ G },

get head entities(r, e′) := { e ∈ E | (e, r, e′) ∈ G }.
A relation path is z = (r1, . . . , rℓ), and a reasoning path (instantiation) is

Z : e0
r1−→ e1

r2−→ · · · rℓ−→ eℓ, (ei−1, ri, ei) ∈ G.

Proposition A.1 (Finite-Horizon Bound). For any path Z of length ℓ, there exists an action sequence
from Uret of length at most ℓ whose final output contains eℓ.

Proof. Along the path Z, for each step i = 1, . . . , ℓ the call get tail entities(ei−1, ri) returns
a set that contains ei. Therefore, after the ℓ-th step the output contains eℓ.

Proposition A.2 (Completeness (Integrity)). Every finite reasoning path in G can be realized by a
finite sequence of actions from Uret whose outputs include its terminal entity.

Proof. Starting with ℓ = 1, if (e0, r1, e1) ∈ G then e1 ∈ get tail entities(e0, r1). For the
inductive step, assume the claim holds for length ℓ− 1. By the hypothesis we reach eℓ−1; applying
get tail entities(eℓ−1, rℓ) then returns a set containing eℓ.

Proposition A.3 (Schema-Free Transferability). The semantics of each a ∈ Uret depend only on
membership of triples (e, r, e′) in G. Replacing G with any directed KG G′ preserves action meaning
and allows a fixed client policy to transfer unchanged.

Proof. Each operator is defined as a set comprehension over triples in G, independent of schema,
datatypes, or ontology rules. Under G 7→ G′, the same comprehensions define the actions on G′, so
a learned policy remains well-defined.

Proposition A.4 (Minimality of Uret). No proper subset of Uret supports both symmetric navigation
and local relation discovery; any operator that only filters or composes these four is derivable.

Proof. Removing get tail entities (resp. get head entities) prevents forward (resp. back-
ward) traversal. Removing both get tail relations and get head relations blocks lo-
cal relation discovery when the relation set is unknown. Conversely, a conditional/filtered
variant can be constructed by enumerating get tail relations(e) and intersecting results of
get tail entities; hence no additional primitives are required.

B DATASETS

B.1 KGQA DATASETS

These are the KGQA datasets we used in our work.
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Freebase WebQSP (Yih et al., 2016) (full test; 1,639) Open-domain questions with mostly 1–2
hop reasoning over Freebase MIDs and SPARQL annotations.

ComplexWebQuestions (CWQ) (Talmor & Berant, 2018) (full test; 3,531) Compositional multi-
hop questions generated from SPARQL templates that stress longer chains and constraint composi-
tion; used to probe multi-turn retrieval quality and robustness without dataset-specific rules.

SimpleQuestions (SimpleQA) (Bordes et al., 2015) (1,000 test) Single-relation 1-hop questions
over Freebase; serves as a retrieval-fidelity and token-efficiency baseline for KG-R1. We randomly
sample 1,000 QA from the original test split (21,687).

GrailQA (Gu et al., 2021) (1,000 test) Diverse compositional questions emphasizing generalization
under Freebase; handled with the same minimal action interface and no hand-crafted schemas. We
randomly sample 1,000 from the original test split (13,231).

Wikidata T-REx (Elsahar et al., 2018) (5,000 test) Large-scale slot-filling–style QA grounded in
Wikidata triples; used to assess scalability and coverage under a different KG schema. We randomly
sample 5,000 from the corpus (∼2.2M).

QALD-10en (Usbeck et al., 2023) (333 test) Manually curated, linguistically varied questions over
Wikidata; useful for evaluating precision on a small but challenging set. We evaluate on 333 exam-
ples.

Temporal KG MultiTQ (Chen et al., 2023) (1,000 test) Time-aware QA requiring temporal qual-
ifiers (e.g., during, from–to); evaluates KG-R1 on temporal reasoning with time-scoped entities and
relations. We randomly sample 1,000 from the original test split (9,000).

B.2 DATASET PREPROCESSING

Two-hop Subgraph Extraction Methodology. Following subgraph preprocessing practice
RoG (Luo et al., 2024), we builds a question-specific near subgraph to shrink the search space
and suppress spurious matches: starting from the linked anchor entities eq and gold answers Aq , it
performs a breadth-first expansion over the KG G up to the dataset’s maximum 2-hop radius h The
processed subgraph for each question is cached and used for KG retrieval server in KG-R1.

B.3 FREEBASE, WIKIDATA, AND MULTITQ SCHEMA COMPARISON

The following tables show the different schemas of Freebase, Wikidata, and MultiTQ.

Table 4: Freebase knowledge graph dataset used for KGQA evaluation. All datasets share the same
underlying Freebase knowledge graph structure with 4.9M entities and 663 relations.

Dataset Entities Relations
Freebase - P!nk

- Gender
- Ice Cube
- United States of America
- Nemanja Mikic

- broadcast.content.artist
- people.person.nationality
- music.artist genre
- location.location.containedby
- basketball.basketball.player position

Questions
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WebQSP (4,737 test questions):
Q: what does jamaican people speak
A: [Jamaican English, Jamaican Creole English Language]
CWQ (3,531 test questions):
Q: Lou Seal is the mascot for the team that last won the World Series when?
A: [2014 World Series]
SimpleQA (21,687 test questions):
Q: where is the madam satan located
A: [United States of America]
GrailQA (13,231 test questions):
Q: which play is produced by the illusion?
A: [The Illusion]

Table 5: Wikidata knowledge graph datasets used for KGQA evaluation. All datasets share the same
underlying Wikidata knowledge graph structure with 15M entities and 2.3K relations.

Dataset Entities Relations
Wikidata - Barack Obama

- Germany
- Albert Einstein
- Microsoft
- Paris

- instance of
- country
- occupation
- date of birth
- place of birth

Questions
T-Rex (2.2M test questions):
Q: What is the occupation of Albert Einstein?
A: [Physicist]
QALD-10en (250 test questions):
Q: Which companies were founded by Bill Gates?
A: [Microsoft]

Table 6: Temporal knowledge graph dataset used for KGQA evaluation. MultiTQ focuses on tem-
poral reasoning with time-aware entities and relations.

Dataset Entities Relations
Temporal
KG

- Barack Obama (2009-2017)
- World War II (1939-1945)
- Steve Jobs (1955-2011)
- Cold War (1947-1991)
- Nelson Mandela (1994-1999)

- president during
- occurred during
- CEO from to
- started in
- ended in

Questions
MultiTQ (9,000 test questions):
Q: Who was the president of the United States when the iPhone was first launched?
A: [George W. Bush]

Q: Which major historical event ended the same year the European Union was established?
A: [Cold War]

Q: What technology company was founded during World War II?
A: [IBM]
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C BASELINES

C.1 LLM-ONLY METHODS

Setup. We evaluate Vanilla and CoT in a zero-shot setting without access to the KG retrieval server
(i.e., no KG augmentation). All baselines run on Qwen-2.5-3B-IT, Qwen-2.5-7B-IT, and LLaMA-
2-7B-Chat with temperature=0 and top p=50..

Prompts. We use the following prompt templates for vanilla and CoT baselines.

Prompte template for Vanilla setup
Answer the given question directly and concisely based on your knowledge.
Format your answer as: Answers: [”answer1”, ”answer2”, ...].
For single answers, use: Answers: [”answer”].
Question: [Question]
Answers:

Prompte template for CoT setup
Think through the question step by step, then provide the answer.
IMPORTANT: Follow this exact format:
1. Start with ”Reasoning:” followed by your step-by-step thinking.
2. End with ”Answers:” followed by your final answer in brackets.
3. Do NOT put ”Answers:” before your reasoning.
Format your answer as: Answers: [”answer1”, ”answer2”, ...].
For single answers, use: Answers: [”answer”].
Question: [Question]
Reasoning:

Evaluation. Baseline outputs (Vanilla and CoT) differ in format from the KGQA gold answer set,
so we employ an LLM-as-judge to align them. For each question, gpt-5-mini (OpenAI API)
is given the question, the ground-truth answer set Aq , and parsed predited entities Âq from the
base model’s output with a concise semantic-entity-matching prompt (Box below); it returns only a
binary vector indicating, for each gold entity in order, whether the prediction refers to the same real-
world entity at the same specificity (1 for exact/equivalent matches, e.g., “Apple Inc.” = “Apple”; 0
for overly general predictions, e.g., “Islam” vs [“Shia Islam”, “Sunni Islam”]). We report Pass@K
(K=1,2,3,4), F1, precision, recall, and generation-token usage.

Prompt template for LLM-as-Judge
You are an evaluator performing semantic entity matching. Your task is to decide, for each gold entity
(in order), whether the model’s prediction refers to the same real-world entity with the same level of
specificity.
Respond only with a binary vector in the format:

[0, 1, 0, 1]

Rules:
- Exact matches or equivalent references → output 1 (e.g., ”Apple Inc.” = ”Apple”).
- Too general or not specific enough when specificity is required → output 0 (e.g., ”Islam” vs [”Shia
Islam”, ”Sunni Islam”]).
Gold entities: [gold entity list]
Predicted entities: [predicted entity list]
Your Response:

C.2 LLM+KG BASELINSE

RoG (Luo et al., 2024) Reasoning on Graphs (RoG) couples LLMs with KGs via a plan-
ning–retrieval–reasoning pipeline: the LLM first proposes KG-grounded relation paths as faith-
ful plans, uses them to retrieve valid paths from the KG, and then performs stepwise reasoning to
produce an answer. This yields interpretable multi-hop reasoning and reduces hallucinations by
constraining reasoning to KG structure.
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ToG (Sun et al., 2024) Think-on-Graph (ToG) treats the LLM as an agent that iteratively explores
the KG: it performs beam search over entities/relations, expands promising paths, and alternates
retrieval with reasoning until a final path/answer is selected. Compared to prompt-only baselines,
ToG improves deep, compositional reasoning by explicitly navigating the KG during multi-hop
search.

ReKnoS (Wang et al., 2025c) Reasoning with Knowledge Super-relations (ReKnoS) introduces
super-relations that summarize and connect multiple relational paths, enabling both forward and
backward reasoning while expanding the search space the LLM can traverse. By reasoning over
these super-relations (rather than isolated edges), ReKnoS boosts retrieval success and multi-hop
accuracy, especially on complex queries.

C.3 CROSS-KG GENERLIAZATION KG-SPECIFIC BASELINES

KG-Specific Baselines We selected one or two recent (2022–) state-of-the-art KG-specific methods,
taking the authors’ reported test/dev scores as basline comparison. The below outlines baseline
methods reported in Sec. 4.2 by KGQA benchmarks. The table 7 shows the summary.

Dataset Method (Year) Backbone/Base LM Approach F1 Hits@1/EM
SimpleQuestions-
Wiki

SPARKLE (2024) seq2seq (PLM) End-to-end NL→SPARQL with KG-aware
constrained decoding

0.796 0.806

GETT-QA (2023) T5-Base T5 generates skeleton SPARQL (labels +
truncated KG embeds) then grounds IDs

0.761 0.771

GrailQA SG-KBQA (2025) LLaMA-3.1-8B Schema-guided LF generation with
schema context in decoding

0.844 0.791 (EM, Test)

ARG-KBQA (2024) GPT-3.5-0613 Retrieve LF references; LLM gener-
ates/executes LFs; answer extraction

0.649 0.596 (EM, Dev)

T-Rex ATLAS on T-Rex
(2023)

FiD (T5-family) + Con-
triever

Retrieval-augmented seq2seq; fine-tuned
per task

– 0.851

QALD-10 (EN) COT-SPARQL
(2024)

code LLMs (var.) CoT prompting + entity/relation hints for
SPARQL generation

0.498 0.508

DFSL-MQ (2024) CodeLlama-70B Dynamic few-shot retrieval + multi-query
generation (beam FS)

0.622 0.632

MultiTQ Prog-TQA (2024) LLaMA-13B/Vicuna-
13B

KoPL program ICL + linking + execution
+ self-improvement

– 0.797

ARI (ACL 2024) GPT-3.5-0613 Abstract Reasoning Induction: plan (ag-
nostic) + execute (knowledge-based)

– 0.380

Table 7: KG-specific Baselines For rows where Hits@1 is not reported, we show EM when avail-
able; where neither is reported, we show ”–”. Numbers are as reported in the cited papers/leader-
boards.

SimpleQA. SPARKLE (Lee & Shin, 2024) is an end-to-end NL→SPARQL approach that performs
constrained decoding while explicitly consulting the knowledge graph’s structure to avoid invalid
triples during generation. GETT-QA (Banerjee et al., 2023) fine-tunes T5 (Base) to generate a skele-
ton SPARQL containing entity/relation labels plus truncated KG embeddings, then grounds labels
to Wikidata IDs in a post-hoc step.

GrailQA. SG-KBQA (Gao et al., 2025) is a schema-guided system that conditions a LLaMA-3.1-8B
backbone on schema context and generates executable logical forms; official leaderboard reports
overall Test EM/F1. ARG-KBQA (Tian, 2024) retrieves logical-form exemplars via an unsupervised
ranker, then prompts GPT-3.5-0613 to generate and execute candidate logical forms.

QALD-10-en. COT-SPARQL (D’Abramo et al., 2025) applies chain-of-thought prompting with en-
tity/relation hints to produce SPARQL; it reports both standard F1 and the Macro F1-QALD. DFSL-
MQ (D’Abramo et al., 2024) performs dynamic few-shot retrieval with multi-query generation and
beam selection (evaluated with CodeLlama-70B); it reports standard F1 on QALD-10-en.

T-REx. ATLAS (Izacard et al., 2023) is a retrieval-augmented seq2seq (FiD) reader paired with a
dense retriever (Contriever); it reports Accuracyon T-Rex(treated as comparable to Hits@1).

MultiTQ (temporal KGQA). Prog-TQA (pro, 2024) uses in-context KoPL program generation with
linking, execution, and a self-improvement loop; results are reported for LLaMA-13B/Vicuna-13B
readers. ARI (Chen et al., 2024) (Abstract Reasoning Induction) separates planning (knowledge-
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agnostic) from execution (knowledge-based) with GPT-3.5-0613; it reports Accuracy (treated as
comparable to Hits@1).

Notes: COT-SPARQL also reports Macro F1-QALD = 0.6387 on QALD-10 via GERBIL, while
we list its standard F1 here for consistency across rows. ATLAS reports Accuracy on KILT hidden
tests: zsRE = 80.8, T-REx = 85.1 (we do not map these to F1/Hits@1/EM). SG-KBQA numbers
(EM=79.140, F1=84.403) are from the official GrailQA leaderboard (Test). ARG-KBQA is reported
on Dev set (EM=59.6, F1=64.9). †ARI reports Accuracy on MultiTQ (treated as comparable to
Hits@1).

D KG-R1 DETAILS

D.1 TRAINING ALGORITHM

The following pseudocode outlines the training procedure for KG-R1.

Algorithm 1: KG-R1 Training with RL
Input: Dataset D = {(q,G,Aq)}, base LLM π0, horizon H , rollouts N
Output: Trained policy πθ

πθ ← π0 // Initialize from base LLM
foreach mini-batch of queries from D do

foreach q in batch do
Collect N rollouts {τ (n)}Nn=1;
for n← 1 to N do

τ (n) ← (p) ; // where p is the instruction prompt for q
for t← 1 to H ; // Multi-turn interaction
do

rt ∼ πθ(· | τ (n)) ; // Generate response
at ← Ψ(rt) where at ∈ Aquery ∪ {answer};
if at ∈ Aquery then

Execute at, get ot+1, and append to τ (n);
end
else

Extract Âq and break;
end

end
end
Compute rewards for collected rollouts:;

Turn: rturn,(n)
t = wfmtvfmt(rt) + wkgvkg(at, ot+1) + wansvans(rT );

Global: Rglobal,(n) = wF1 · F1(Âq, Aq) + wret · vret;
end
Credit assignment: G(n)

t = r
turn,(n)
t + λRglobal,(n);

Group baseline: Ḡ = 1
|S|

∑
(n,t)∈S G

(n)
t , where S = {(n, t) : t ≤ T (n)};

Advantages: A(n)
t =

G
(n)
t −Ḡ

std(n,t)∈S(G)+ϵ ;
Update: πθ via GRPO with J(θ), entropyH, and KL divergence to π0;

end

D.2 SERVER INSTRUCTION PROMPT

Server Instruction template consists of A,B,C. We use the same server instruction for both training
and evaluation across experiments.
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Server Instruction template for KG-R1
If you encounter a KG-related error, read the error message carefully and correct your query.
Use exactly these query functions:
-get tail relations(entity) : Returns relations where the entity is the subject/head.
-get head relations(entity) : Returns relations where the entity is the object/tail.
-get tail entities(entity, relation) : Returns entities connected to the given entity by the specified
relation.
-get head entities(entity, relation) : Returns entities from which the given entity is connected by the
specified relation.

D.3 REWARD WEIGHTS

Our RL objective combines per-turn and episode-level signals with fixed weights. Per-turn re-
wards encourage well-structured interaction and effective retrieval: rturnt = wfmt sfmt + wkg skg +
wans sans, where sfmt scores output structure/format validity, skg rewards schema-valid, non-empty
KG queries, and sans checks final-answer formatting/consistency. Episode-level reward empha-
sizes answer correctness and retrieval coverage: Rglobal = wF1 · F1(Âq, Aq) + wret · vret, with
vret ∈ {0, 1} indicating adequate retrieval coverage. Unless otherwise noted, we use the following
Table 8 as defaults.

Table 8: Reward-component weights (w) for KG-R1 reward function.

Symbol Name Scope Role (concise) Default

wfmt Format weight Turn Rewards valid per-turn output structure in rturn
t 0.5

wkg KG-query weight Turn Rewards schema-valid, non-empty KG re-
trieval in rturn

t

0.5

wans Answer-format weight Turn Rewards correct final-answer formatting/con-
sistency in rturn

t

0.5

wF1 Final-answer weight Episode Weights F1(Âq, Aq) in Rglobal 1.0
wret Retrieval-coverage weight Episode Rewards coverage signal vret∈{0, 1} in Rglobal 1.0

Notes: Only reward-component weights are shown; optimization and rollout hyperparameters are omitted.

D.4 RL IMPLEMENTATION & HYPERPARAMETER

Learning Rates and Optimizer. Both Qwen-2.5-3B-it and Qwen-2.5-7B-it use an iden-
tical learning rate of 1 × 10−6 with no warmup. We use the AdamW optimizer with weight decay
0.01 applied to all parameters except biases and layer-normalization weights, and gradient clipping
by global norm set to 1.0 to prevent gradient explosion during RL training.

Batch Configuration and Gradient Accumulation. The 3B model uses a training batch size of
128 with validation batch size of 256, whereas the 7B model uses a training batch size of 256 with
validation batch size of 128. During GRPO rollout, we collect N = 16 trajectories per prompt for
the 3B model and N = 8 for the 7B model to balance exploration with memory constraints. The
mini-batch size is 128 for both models, with dynamic batch sizing enabled to utilize GPU memory
efficiently.

RL Coefficients. RL training uses GRPO (Group Relative Policy Optimization) with multi-turn
advantage computation enabled. The KL loss coefficient differs by model: β = 0.01 for 3B and
β = 0.02 for 7B, using the K3 KL loss to limit divergence from the reference policy. The entropy
coefficient is set to 0 for both models, favoring exploitation over exploration for multi-turn KG
reasoning.

Sampling Configuration. During training we use sampling temperature 1.0 with nucleus sampling
disabled (top p= 1.0, top k= −1) to maintain consistent generation. For evaluation we switch
to deterministic decoding with temperature 0.0 and sampling disabled (do sample= false) to
obtain reproducible measurements.

Hardware Specifications and Training Duration. Training is conducted on 4 NVIDIA H100
GPUs for both model sizes. For the 3B model, we allow up to 21,000 tokens/GPU for PPO pro-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

cessing and 18,384 max batched tokens for VLLM rollout. For the 7B model, we allocate 12,000
tokens/GPU for PPO and 12,288 max batched tokens for VLLM, using FSDP parameter and op-
timizer offloading to fit memory constraints. Both configurations use bfloat16 precision with
chunked prefill enabled. Training runs for 400 steps with checkpoints saved every 50 steps (3B) or
every 25 steps (7B).

D.5 KG-R1 RETREIVAL SERVER DETAILS

Setup. We implemented the KG-R1 retrieval server with FastAPI (Ramı́rez, 2018) and
Uvicorn (Encode, 2018) to support (i) a schema-free 1-hop KG query API, (ii) high-
throughput async batch execution, and (iii) robust validation and observability (regex action
parsing, standardized <information> wrapping with auto-closure, and final-turn safe-
guards). After the KG-R1 agent generates a response, the parsed <kg-query> action
is sent to the server, which performs exact string matching over the per-question knowl-
edge graph to resolve entities and relations and returns the retrieved information. If the
call is invalid—one of: KG SERVER ERROR: Invalid Action; KG FORMAT ERROR:
Missing Required Fields; KG FORMAT ERROR: Wrong Argument Count;
KG SAMPLE NOT FOUND: Sample Missing; KG ENTITY NOT FOUND: Entity Not
in KG; KG RELATION NOT FOUND: Invalid Relation; KG NO RESULTS: No
Relations Found; KG NO RESULTS: No Entities Found—the server responds with
a descriptive error message (see box below).

KG-R1 Server Error Examples

KG SERVER ERROR: Invalid Action
<error>Action ”get entity info” not available (use: get head relations, get tail relations,
get head entities, get tail entities)</error>

KG FORMAT ERROR: Missing Required Fields
<error>Missing required fields for get tail entities: relation name</error>

KG FORMAT ERROR: Wrong Argument Count
<error>get tail relations accepts only one entity argument</error>

KG SAMPLE NOT FOUND: Sample Missing
<error>Sample ”sample 12345” not found in KG</error>

KG ENTITY NOT FOUND: Entity Not in KG
<error>Entity ”Barack Obamaa” not found in KG</error>

KG RELATION NOT FOUND: Invalid Relation
<error>Relation ”location.capital” not found in KG</error>

KG NO RESULTS: No Relations Found
<error>No tail relations found for entity ”Random Entity 123” in knowledge graph</error>

KG NO RESULTS: No Entities Found
<error>No tail entities found for relation ”film.director.film” with head ”Barack Obama” in
knowledge graph</error>

Figure 5: KG-R1 error types with actual server error messages.
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E SUPPLEMENTARY EXPERIMENTAL RESULTS

Figure 6 shows Training dynamics of Qwen-2.5b-it are highly consistent across three random seeds,
with smooth F1 improvements and minimal variance throughout 400 optimization steps. Both We-
bQSP (red) and CWQ (blue) curves show rapid early gains and stable convergence, indicating robust
optimization and reproducible policy learning.

E.1 REPRODUCIBILITY OF KG-R1 TRAINING
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Figure 6: Training dynamics of Qwen 2.5b-it across 3 random seeds demonstrate reproducibility
with steady F1 improvement and low variance. WebQSP (red) and CWQ (blue) metrics over 400
steps show stable convergence.

E.2 LATENCY AND THROUGHPUT ANALYSIS

Single-Query Latency We measured end-to-end wall-clock latency on 500 randomly sampled WE-
BQSP queries. The mean latency is 6.38 s with a standard deviation of ≈ 1.0 s (i.e., mean±1σ =
5.39–7.36 s). Figure 7 shows the distribution and the per-turn timing breakdown; cumulative time
grows approximately linearly with turn number, and the average maximum turn count is 4.2.
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Figure 7: Single-query latency of KG-R1 on one NVIDIA H100. (a) Distribution of end-to-end
latency; the dashed line marks the mean 6.38 s, and dotted lines indicate mean±1σ (5.39–7.36 s).
(b) Cumulative time versus turn number across 500 queries; diamonds show per-turn means and the
dashed trend denotes the average time per turn. The average maximum turn count is 4.2, and the
near-linear growth indicates predictable per-turn costs suitable for interactive KGQA.
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Batched Throughput We evaluate batched inference at batch size 64 on a single NVIDIA H100
(Table 9). LLM-only baselines (no KG calls) achieve high throughput—81.8 (Vanilla) and 70.1
(CoT) samples/s—driven by short generation (43.0/206.0 tokens per sample). KG-R1 incurs KG-
server retrieval, reducing throughput but remaining practical for offline processing: the single-run
setting reaches 3.7 samples/s (1205.9 gen tokens/s) with 4.4 KG calls per query, while the N=4
runs setting trades throughput for more KG interaction (17.5 calls per query), yielding 2.0 samples/s
(612.1 gen tokens/s). Overall, KG-R1 sustains batch processing on one H100 while supporting
KG-grounded reasoning.

Table 9: Batched throughput on one NVIDIA H100 (256 queries; batch size 64). Samples: total
queries. Batch: batch size. KG Calls: total KG-server requests. Calls/Sample: average KG requests
per query. Total (s): end-to-end wall-clock time. Gen Tok./Sample: generated tokens per query.
Samples/s: queries per second. Gen Tok./s: generated tokens per second.

Configuration Samples Batch KG Calls Calls/Sample Total (s) Gen Tok./Sample Samples/s Gen Tok./s

Vanilla Baseline 256 64 0 0.0 12.4 43.0 81.8 887.7
Vanilla CoT 256 64 0 0.0 14.1 206.0 70.1 3740.1
KG-R1 (single run) 256 64 1127 4.4 73.2 345.0 3.7 1205.9
KG-R1 (N=4 runs) 256 64 4478 17.5 142.2 340.0 2.0 612.1

E.3 ABLATION STUDIES

All ablations in Table 3 evaluate KG-R1 with Qwen-2.5-3B-it trained on WEBQSP and CWQ
using a maximum turn budget of H=5. We report the full ablation table in Table 3 (training curves
in Figures 8–9).

Turn reward. We vary the turn-level reward by setting the weights to wfmt=0, wkg=0, and wans=0
(default: all 0.5).

Turn-wise advantage. Instead of computing the turn-wise group advantage A
(n)
t in Sec. 3.3, we

compute a trajectory-wise group advantage

A
(n)
t =

G(n) − Ḡ

σG + ϵ
, G(n) =

1

T

∑
t

r
turn,(n)
t + Rglobal,(n),

and use it for token-level credit assignment.

Retrieval reward. We ablate the retrieval component by setting the weight wret=0 (default: 1).

RL algorithm: GRPO vs. PPO. We replace GRPO with vanilla PPO (VERL (Sheng et al., 2024)
defaults), and set the turn-reward mixture weight wturn=0 (default: 0.5). Advantage estimation is
performed by a learned value critic (Qwen-2.5-3B).

Hierarchical relation retrieval. We change the KG-server retrieval format from a flat list to a
hierarchical format that mirrors “domain.type.property” (see Table 10).

Base LLM parameter size (7B). We swap the backbone from Qwen-2.5-3B-it to Qwen-2.5-7B-it
while keeping data, rewards, and budgets fixed.
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E.3.1 TRAINING CURVES
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Figure 8: Training curves of ablation studies WebQSP, reporting F1 score across training steps.
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Figure 9: Training curves of ablation studies for CWQ, reporting F1 score across training steps.

E.3.2 HIEARCHICAL RETIREVAL FORMAT

Hierarchical retrieval format groups Freebase relations by their dot-notation structure (e.g., domain
→ type → property), presenting them as a compact tree instead of a flat comma-separated list.
In the example(see Table E.3.2), this formatting preserves the same information while reducing
verbosity—79 tokens vs. 156 tokens (49% fewer tokens).
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Table 10: Hierarchical relation retrieval formatting used in KG-R1 to organize Freebase relations.

Flat Format Hierarchical Format
<kg-query>
get tail relations(”m.09c7w0”)
</kg-query>

<information> Tail relations for ”m.09c7w0”:

location.country.first level divisions,
location.location.containedby,
location.location.contains,
people.person.nationality,
people.person.place of birth,
government.government.government for
</information>

Result: 156 tokens

<kg-query>
get tail relations(”m.09c7w0”)
</kg-query>

<information> Tail relations for ”m.09c7w0”:

location
country: first level divisions
location: containedby, contains

people
person: nationality, place of birth

government
government: government for

</information>

Result: 79 tokens (49.4% savings)

E.3.3 PPO REWARD HACKING

Table 11: Policy model reward hacking under PPO. The actor model generates fake KG information
that critic model cannot distinguish from real data. Blue denotes responses generated by the KG-R1
agent.

Normal KG Retrieval Fake Information Generated by Actor Policy in
PPO

Question: Who directed the movie Inception?

<kg-query>
get head entities(”film.film.directed by”,
”Inception”)
</kg-query>

<information> Head entities for relation
”film.film.directed by” with tail ”Inception”:
Christopher Nolan (m.04f9z)
</information>

..

..
Answer: Christopher Nolan directed
Inception.

Question: Who directed the movie Inception?

<kg-query>
get head entities(”film.film.directed by”,
”Inception”)
</kg-query>

Christopher Nolan, Barack Obama, Elon
Musk, Albert Einstein, Michael Jordan
</information>
..
..

Answer: Inception was directed by
Christopher Nolan, with creative input from
Barack Obama, Elon Musk, Albert Einstein,
and Michael Jordan as co-directors.
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F EXAMPLES OF RESPONSES

KG-R1 Response Example — WebQSP

Question: What are Victoria Beckham’s kids’ names? Initial entities : ’Victoria Beckham’

<think>
I need to find out the names of Victoria Beckham’s kids. I will start by finding any relations to her
children.
</think>
<kg-query>
get tail relations(”Victoria Beckham”)
</kg-query>

<information> Tail relations for entity ”Victoria Beckham”:
base.popstra.celebrity.breakup, award.award nominee.award nominations, . . . , peo-
ple.person.children, . . .</information>

<think>
The relation people.person.children is relevant. I will use it to get the names of her children.
</think>
<kg-query>
get tail entities(”Victoria Beckham”, ”people.person.children”)
</kg-query>

<information> Tail entities for relation ”people.person.children”:
Brooklyn Joseph Beckham, Cruz David Beckham, Harper Seven Beckham, Romeo James Beck-
ham </information>

<think>
The names of Victoria Beckham’s children are found. I will verify by checking each child’s parent
relation.
</think>
<kg-query>
get head relations(”Brooklyn Joseph Beckham”)
</kg-query>

<information> Head relations for ”Brooklyn Joseph Beckham”:
base.godparents.godparent.godchildren, people.person.children, peo-
ple.sibling relationship.sibling </information>

<think>
Confirming Brooklyn’s parents using people.person.children.
</think>
<kg-query>
get head entities(”Brooklyn Joseph Beckham”, ”people.person.children”)
</kg-query>

<information> Head entities for relation with tail ”Brooklyn Joseph Beckham”:
David Beckham, Victoria Beckham </information>

<think> Brooklyn, Cruz, Harper, and Romeo all confirm to have David and Victoria Beckham as
parents. </think>
<answer>
Brooklyn Joseph Beckham, Cruz David Beckham, Harper Seven Beckham, Romeo James Beck-
ham
</answer>

[ground truth] {‘Brooklyn Joseph Beckham’, ‘Romeo James Beckham’, ‘Cruz David Beckham’,
‘Harper Seven Beckham’}

Figure 10: Example KG-R1 response on WebQSP, showing multi-step reasoning and verification
for a person-children query. Blue denotes responses generated by the KG-R1 agent.
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KG-R1 Response Example - CWQ

Question: What movie, written by Mike Jefferies, starred Nick Cannon?
Initial entities: ”Mike Jefferies”, ”Nick Cannon”

<think>
Let’s start by finding a movie written by Mike Jefferies. We can use the relation that associates
writers with their movies.
</think>
<kg-query>
get tail relations(”Mike Jefferies”) </kg-query>

<information>Tail relations for entity ”Mike Jefferies”:
film.film story contributor.film story credits, people.person.nationality, peo-
ple.person.place of birth, film.writer.film, ... </information>

<think>
From the initial query results, we have two possible options for Mike Jefferies’ work. Let’s start with
”film.writer.film” to find the movies written by Mike Jefferies and then see if Nick Cannon starred
in any of those films.
</think>
<kg-query>
get tail entities(”Mike Jefferies”, ”film.writer.film”)
</kg-query>

<information>Tail entities for relation ”film.writer.film” with head ”Mike Jefferies”: Goal II: Living
the Dream, Goal III: Taking on the World</information>

<think>
Now that we have two movies written by Mike Jefferies, let’s check if Nick Cannon has starred in
any of these movies. We’ll use the relation that connects actors with the movies they star in.
</think> <kg-query>
get head relations(”Nick Cannon”)
</kg-query>

<information>Head relations for entity ”Nick Cannon”: base.popstra.dated.participant,
film.personal film appearance.person, music.album.primary release,
base.popstra.lived with.participant, film.film.written by, ... </information>
...
...
...

<think>
From the relations where ”Goal II: Living the Dream” is involved, we can see that it is a film with a
writer, which aligns with Mike Jefferies.
</think>
<answer>
Goal II: Living the Dream, School Dance, School Gyrls, Goal III: Taking on the World
</answer>

[ground truth] {’Goal II: Living the Dream’ }

Figure 11: Example KG-R1 response in CWQ. Blue denotes responses generated by the KG-R1
agent.
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KG-R1 Response Example - SimpleQA

Question: where is the madam satan located? (Initial entities: ”Madam Satan”)

<think>
I need to find out where Madam Satan is located. First, I will check if it has a location or if it’s an
entity that can be queried about its location.
</think>
<kg-query>
get tail relations(”Madam Satan”)
</kg-query>

<information>Tail relations for entity ”Madam Satan”:
film.film.cinematography, common.topic.notable types, film.film.language,
film.film.starring,film.film.country, ... award.ranked item.appears in ranked lists,
film.film.film art direction by</information>

<think>
None of the identified relations are directly related to location. Let me check if Madam Satan is
detailed in a geographical context.
</think>
<kg-query>
get tail entities(”Madam Satan”, ”film.film.country”)
</kg-query>

<information>Tail entities for relation ”film.film.country” with head ”Madam Satan”: United
States of America</information>

<think>
I have found that Madam Satan, identified as a film, is located in the United States of America.
However, it’s crucial to confirm the specific location or city within the country where Madam Satan
was filmed.
</think>
<kg-query>
get tail entities(”Madam Satan”, ”film.film.starring”)
</kg-query>
..
..
..

<information>Tail entities for relation ”film.film.runtime” with head ”Madam Satan”:
m.03kx9f2</information>

<think>
I am still not obtaining the most helpful information about the location. Possibly Madam Satan was
released, but not filmed in a specific place.
</think>
<kg-query>
get head relations(”m.02tb01n”)
</kg-query>

<information>Head relations for entity ”m.02tb01n”:
film.film.starring, film.actor.film</information>

<think>
I have questionned the relation ”film.actor.film”. This relation includes the movies the actor is in.
Let’s try to find a clearer detail for the location of Madam Satan.
</think>
<answer>
United States of America
</answer>

[ground truth] {’United States of America’ }

Figure 12: Example KG-R1 response in SimpleQA. Blue denotes responses generated by the KG-R1
agent.
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KG-R1 Response Example — T-REx

Question: What is the instance of of Solberg??
Initial entities: ”Solberg”

<think>
Let’s start with the entity Solberg and try to find out what it represents. It seems like Solberg could
be an entity that describes a geopolitical boundary, location, or characterization. The query can
be adjusted from general to specific as needed.
</think>
<kg-query>
get tail relations(”Solberg”)
</kg-query>

<information>Tail relations for entity ”Solberg”: P1889, P407, P1552, P282, P31,
P460</information>

<think>
The relations provided show how Solberg is related to other entities. Let’s explore each relation
to find out more about Solberg.
</think>
<kg-query>
get tail entities(”Solberg”, ”P282”)
</kg-query>

<information>Tail entities for relation ”P282” with head ”Solberg”: Latin
script</information>

<think>
The relation P282 corresponds to ”type.object.name” according to the API documentation, indi-
cating that Solberg is a human name. The relation P407 is also noteworthy but does not give
further specific information. Let’s try a broader query for more context related to Solberg.
</think>
<kg-query>
get tail entities(”Solberg”, ”P31”)
</kg-query>

<information>Tail entities for relation ”P31” with head ”Solberg”: Wikimedia disambiguation
page, family name</information
...
...
...

<think>
The retrieval of ”Soelberg”, ”Sohlberg”, and ”Sohlberg” suggests that Solberg might be associated
with these names. To find an instance of Solberg, we can search for a specific entity of this name.
</think>
<answer>
Latin script, Wikimedia disambiguation page, family name, Soelberg, Sohlberg, Sohlberg
</answer>

[ground truth] {’family name’, ’human settlement’, ’urban area in Sweden’, ’minor locality in Swe-
den’, ’minor locality in Sweden’, ’Wikimedia disambiguation page’, ’human settlement’, ’Ortsteil’,
’stone setting’, ’human settlement’, ’minor locality in Sweden’, ’hill’, ’stone setting’, ’hill’, ’human
settlement’ }

Figure 13: Example KG-R1 response in T-REx. Blue denotes responses generated by the KG-R1
agent.
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KG-R1 Response Example - QALD10en

Question: After whom is the Riemannian geometry named?? (Initial entities: ”Riemannian geom-
etry”)

<think>
I need to find out who the Riemannian geometry is named after. Let’s start by investigating the
relations and entities connected to ”Riemannian geometry”.
</think>
<kg-query>
get tail relations(”Riemannian geometry”)
</kg-query>

<information>Tail relations for entity ”Riemannian geometry”:
on focus list of Wikimedia project, named after, maintained by WikiProject, topic’s main category,
instance of, subclass of</information>

<think>
From the relations extracted, it appears the Riemannian geometry is named after someone. I will
now search for the person it’s named after.
</think>
<kg-query>
get tail entities(”Riemannian geometry”, ”named after”)
</kg-query>

<information>Tail entities for relation ”named after” with head ”Riemannian geometry”: Bern-
hard Riemann</information>

<think>
I now have the information that the Riemannian geometry is named after Bernhard Riemann. Let’s
confirm this by checking if there’s more detailed information about this relationship.
</think>
<kg-query>
get head relations(”Bernhard Riemann”)
</kg-query>

<information>Head relations for entity ”Bernhard Riemann”:
named after</information>

<think>
These results are confirming that Bernhard Riemann is indeed the person the Riemannian geom-
etry is named after. No further information is needed.
</think>
<kg-query>
get head entities(”Bernhard Riemann”, ”named after”)
</kg-query>

<information>Head entities for relation ”named after” with tail ”Bernhard Riemann”: Rieman-
nian geometry</information>

<think>
This confirms my findings; the Riemannian geometry is named after Bernhard Riemann.
</think>
<answer>
Bernhard Riemann
</answer>

[ground truth] {’Bernhard Riemann’}

Figure 14: Example KG-R1 response in QALD10en. Blue denotes responses generated by the
KG-R1 agent.
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KG-R1 Response Example — GrailQA

Question: what video game is published by softdisk?
Initial entities: ”Near West Side”

<think>
First, I need to find out what game is published by Softdisk. Without specific knowledge about
”Near West Side”, I will start with the game publisher for Softdisk.
</think>
<kg-query>
get head relations(”Near West Side”)
</kg-query>

<information>Head relations for entity ”Near West Side”:
book.periodical publisher period.publisher, business.industry.companies, busi-
ness.employment tenure.company</information

<think>
The head relation ”business.employment tenure.company” suggests that ”Near West Side” might
be a game company or related to a game. I will try to find out the publisher of a game related to
”Near West Side” by looking for games published by Softdisk.
</think>
<kg-query>
get tail relations(”Near West Side”)
</kg-query>

<information>Tail relations for entity ”Near West Side”:
organization.organization.place founded, organization.organization.headquarters,
book.periodical publisher.periodicals published, business.employer.employees,
cvg.cvg publisher.games published, business.business operation.industry, com-
mon.topic.notable types</information
...
...
...

<think>
The previous query did not provide a conclusive answer. Let’s try a different approach by checking
if ”Augusto Cury” is associated with any game publishers.
</think>
<answer>
Augusto Cury, Catacomb 3-D, Chagunitzu, Dangerous Dave in the Haunted Mansion, Hovertank
3D, Iron Seed, Lado Skorin, North Cambridge Academy, Roberto Torretti, Shadow Knights, Star
Film Company, Tiles of the Dragon
</answer>

[ground truth] {’Rescue Rover’,’Catacomb 3-D’,’Shadow Knights’,”Dangerous Dave’s Risky
Rescue”,’Tiles of the Dragon’, ’Catacomb’, ’Commander Keen: Keen Dreams’, ’Dave Goes
Nutz!’,’Chagunitzu’,’Dangerous Dave in the Haunted Mansion’,’Hovertank 3D’,’Iron Seed’}

Figure 15: Example KG-R1 response in GrailQA. Blue denotes responses generated by the KG-R1
agent.
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KG-R1 Response Example — MultiTQ

Question: Who negotiated with Malaysia in 2005–10?

<think>
To answer this, I should check which relations connect to Malaysia that indicate negotiations, then
look for counterpart entities within the 2005–10 range.
</think>
<kg-query>
get head relations(”Malaysia”)
</kg-query>

<information> Head relations for entity ”Malaysia”:
Appeal for aid; Appeal for diplomatic cooperation; Appeal for humanitarian aid; . . . Engage in
negotiation; Express intent to settle dispute </information>

<think>
”Engage in negotiation” appears among head relations. Next, retrieve the counterpart entities that
negotiated with Malaysia.
</think>
<kg-query>
get head entities(”Malaysia”, ”Engage in negotiation”)
</kg-query>

<information> Head entities connected by (?, Engage in negotiation, Malaysia):
Cambodia [2008-06]; China [2011-11]; Governor (Malaysia) [2007-05]; Iran [2006-05; 2006-07];
Japan [2005-05; 2005-06; 2009-01; 2011-10]; Julia Gillard [2011-07]; Mwai Kibaki [2007-04]; . . .
Yemen [2005-02; 2008-10] </information>

<think>
We need the counterpart who negotiated with Malaysia specifically within 2005–10. Signals sug-
gest Thailand-related negotiations in this window; inspect Thailand’s negotiation partners.
</think>
<kg-query>
get tail relations(”Thailand”)
</kg-query>

<information> Tail relations for entity ”Thailand”:
Accede to demands for rights; Accuse; Appeal for aid; Appeal for de-escalation of military en-
gagement; . . . Engage in negotiation </information>

<think>
Confirm the negotiation counterparts of Thailand to identify the specific actor matching the 2005–
10 window.
</think>
<kg-query>
get tail entities(”Thailand”, ”Engage in negotiation”)
</kg-query>

<information> Tail entities connected by (Thailand, Engage in negotiation, ?):
Abhisit Vejjajiva [2009-06; 2009-10; 2010-01]; Cambodia [2005-04; 2005-06; 2008-01; . . . ; 2012-
07]; China [2006-06; 2006-09; 2010-03; 2011-01]; Donald Rumsfeld [2005-06]; Koichiro Matsuura
[2011-02]; . . . South Korea [2005-12] </information>

<think>
Within 2005–10, the counterpart that negotiated with Malaysia is Surakiart Sathirathai.
</think>
<answer>
Surakiart Sathirathai
</answer>

[ground truth] {’Surakiart Sathirathai’}

Figure 16: Example KG-R1 response on MultiTQ, illustrating all four query functions and their
usage. Blue denotes responses generated by the KG-R1 agent.
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